Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

NK cells promote Th-17 mediated corneal barrier disruption in dry eye.

Zhang X, Volpe EA, Gandhi NB, Schaumburg CS, Siemasko KF, Pangelinan SB, Kelly SD, Hayday AC, Li DQ, Stern ME, Niederkorn JY, Pflugfelder SC, De Paiva CS.

PLoS One. 2012;7(5):e36822. doi: 10.1371/journal.pone.0036822. Epub 2012 May 8.

2.

Dendritic cell-derived thrombospondin-1 is critical for the generation of the ocular surface Th17 response to desiccating stress.

Gandhi NB, Su Z, Zhang X, Volpe EA, Pelegrino FS, Rahman SA, Li DQ, Pflugfelder SC, de Paiva CS.

J Leukoc Biol. 2013 Dec;94(6):1293-301. doi: 10.1189/jlb.1012524. Epub 2013 Aug 27.

3.

Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

Coursey TG, Gandhi NB, Volpe EA, Pflugfelder SC, de Paiva CS.

PLoS One. 2013 Nov 4;8(11):e78508. doi: 10.1371/journal.pone.0078508. eCollection 2013.

4.

CD8⁺ cells regulate the T helper-17 response in an experimental murine model of Sjögren syndrome.

Zhang X, Schaumburg CS, Coursey TG, Siemasko KF, Volpe EA, Gandhi NB, Li DQ, Niederkorn JY, Stern ME, Pflugfelder SC, de Paiva CS.

Mucosal Immunol. 2014 Mar;7(2):417-27. doi: 10.1038/mi.2013.61. Epub 2013 Sep 11.

5.

Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell-mediated pathway.

Zheng X, de Paiva CS, Li DQ, Farley WJ, Pflugfelder SC.

Invest Ophthalmol Vis Sci. 2010 Jun;51(6):3083-91. doi: 10.1167/iovs.09-3838. Epub 2010 Feb 3.

6.

IL-17 disrupts corneal barrier following desiccating stress.

De Paiva CS, Chotikavanich S, Pangelinan SB, Pitcher JD 3rd, Fang B, Zheng X, Ma P, Farley WJ, Siemasko KF, Niederkorn JY, Stern ME, Li DQ, Pflugfelder SC.

Mucosal Immunol. 2009 May;2(3):243-53. doi: 10.1038/mi.2009.5. Epub 2009 Feb 25.

7.

Disruption of TGF-β signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca.

De Paiva CS, Volpe EA, Gandhi NB, Zhang X, Zheng X, Pitcher JD 3rd, Farley WJ, Stern ME, Niederkorn JY, Li DQ, Flavell RA, Pflugfelder SC.

PLoS One. 2011;6(12):e29017. doi: 10.1371/journal.pone.0029017. Epub 2011 Dec 14.

8.

Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.

Guzmán M, Keitelman I, Sabbione F, Trevani AS, Giordano MN, Galletti JG.

Exp Eye Res. 2016 Oct;151:19-22. doi: 10.1016/j.exer.2016.07.004. Epub 2016 Jul 18. Review.

PMID:
27443502
9.

Ocular surface disease and dacryoadenitis in aging C57BL/6 mice.

McClellan AJ, Volpe EA, Zhang X, Darlington GJ, Li DQ, Pflugfelder SC, de Paiva CS.

Am J Pathol. 2014 Mar;184(3):631-43. doi: 10.1016/j.ajpath.2013.11.019. Epub 2014 Jan 3.

10.

Desiccating stress-induced disruption of ocular surface immune tolerance drives dry eye disease.

Guzmán M, Keitelman I, Sabbione F, Trevani AS, Giordano MN, Galletti JG.

Clin Exp Immunol. 2016 May;184(2):248-56. doi: 10.1111/cei.12759. Epub 2016 Feb 15.

11.

Desiccating stress-induced chemokine expression in the epithelium is dependent on upregulation of NKG2D/RAE-1 and release of IFN-γ in experimental dry eye.

Coursey TG, Bohat R, Barbosa FL, Pflugfelder SC, de Paiva CS.

J Immunol. 2014 Nov 15;193(10):5264-72. doi: 10.4049/jimmunol.1400016. Epub 2014 Oct 6.

12.

Macrophage Phenotype in the Ocular Surface of Experimental Murine Dry Eye Disease.

You IC, Coursey TG, Bian F, Barbosa FL, de Paiva CS, Pflugfelder SC.

Arch Immunol Ther Exp (Warsz). 2015 Aug;63(4):299-304. doi: 10.1007/s00005-015-0335-0. Epub 2015 Mar 13.

13.

Immune profile of squamous metaplasia development in autoimmune regulator-deficient dry eye.

Chen YT, Li S, Nikulina K, Porco T, Gallup M, McNamara N.

Mol Vis. 2009;15:563-76. Epub 2009 Mar 23.

14.

Immune response in the conjunctival epithelium of patients with dry eye.

Barabino S, Montaldo E, Solignani F, Valente C, Mingari MC, Rolando M.

Exp Eye Res. 2010 Oct;91(4):524-9. doi: 10.1016/j.exer.2010.07.008. Epub 2010 Jul 21.

PMID:
20654615
15.

Tear production and ocular surface changes in experimental dry eye after elimination of desiccating stress.

Yoon KC, Ahn KY, Choi W, Li Z, Choi JS, Lee SH, Park SH.

Invest Ophthalmol Vis Sci. 2011 Sep 21;52(10):7267-73. doi: 10.1167/iovs.11-7231.

PMID:
21849424
16.

Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis.

Chen Y, Chauhan SK, Lee HS, Stevenson W, Schaumburg CS, Sadrai Z, Saban DR, Kodati S, Stern ME, Dana R.

Invest Ophthalmol Vis Sci. 2013 Apr 3;54(4):2457-64. doi: 10.1167/iovs.12-11121.

17.

Effects of eye drops containing a mixture of omega-3 essential fatty acids and hyaluronic acid on the ocular surface in desiccating stress-induced murine dry eye.

Li Z, Choi JH, Oh HJ, Park SH, Lee JB, Yoon KC.

Curr Eye Res. 2014 Sep;39(9):871-8. doi: 10.3109/02713683.2014.884595. Epub 2014 Feb 21.

PMID:
24559509
18.

The CCR6/CCL20 axis mediates Th17 cell migration to the ocular surface in dry eye disease.

Dohlman TH, Chauhan SK, Kodati S, Hua J, Chen Y, Omoto M, Sadrai Z, Dana R.

Invest Ophthalmol Vis Sci. 2013 Jun 12;54(6):4081-91. doi: 10.1167/iovs.12-11216.

19.

IL-17A-mediated protection against Acanthamoeba keratitis.

Suryawanshi A, Cao Z, Sampson JF, Panjwani N.

J Immunol. 2015 Jan 15;194(2):650-63. doi: 10.4049/jimmunol.1302707. Epub 2014 Dec 10.

20.

Amelioration of murine dry eye disease by topical antagonist to chemokine receptor 2.

Goyal S, Chauhan SK, Zhang Q, Dana R.

Arch Ophthalmol. 2009 Jul;127(7):882-7. doi: 10.1001/archophthalmol.2009.125.

PMID:
19597109

Supplemental Content

Support Center