Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 69

1.

A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164.

Krejčík Z, Schleheck D, Hollemeyer K, Cook AM.

Arch Microbiol. 2012 Oct;194(10):857-63. Epub 2012 May 16.

PMID:
22588221
2.

Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase.

Krejcík Z, Denger K, Weinitschke S, Hollemeyer K, Paces V, Cook AM, Smits TH.

Arch Microbiol. 2008 Aug;190(2):159-68. doi: 10.1007/s00203-008-0386-2. Epub 2008 May 28.

PMID:
18506422
3.

Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen.

Weinitschke S, von Rekowski KS, Denger K, Cook AM.

Microbiology. 2005 Apr;151(Pt 4):1285-90.

PMID:
15817795
4.
5.
6.

Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase.

Krejcík Z, Hollemeyer K, Smits TH, Cook AM.

Microbiology. 2010 May;156(Pt 5):1547-55. doi: 10.1099/mic.0.036699-0. Epub 2010 Feb 4.

PMID:
20133363
7.

Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans.

Brüggemann C, Denger K, Cook AM, Ruff J.

Microbiology. 2004 Apr;150(Pt 4):805-16.

PMID:
15073291
8.

Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16.

Denger K, Lehmann S, Cook AM.

Microbiology. 2011 Oct;157(Pt 10):2983-91. doi: 10.1099/mic.0.048462-0. Epub 2011 Jul 14.

PMID:
21757489
9.

Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1.

Styp von Rekowski K, Denger K, Cook AM.

Arch Microbiol. 2005 Aug;183(5):325-30. Epub 2005 May 10.

PMID:
15883781
10.

The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine.

Weinitschke S, Denger K, Smits TH, Hollemeyer K, Cook AM.

Microbiology. 2006 Apr;152(Pt 4):1179-86.

PMID:
16549680
11.

Sulfoacetate generated by Rhodopseudomonas palustris from taurine.

Denger K, Weinitschke S, Hollemeyer K, Cook AM.

Arch Microbiol. 2004 Oct;182(2-3):254-8. Epub 2004 Aug 31.

PMID:
15340795
12.

The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates.

Weinitschke S, Denger K, Cook AM, Smits TH.

Microbiology. 2007 Sep;153(Pt 9):3055-60.

PMID:
17768248
14.

Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway.

Mayer J, Cook AM.

J Bacteriol. 2009 Oct;191(19):6052-8. doi: 10.1128/JB.00678-09. Epub 2009 Jul 31.

16.

Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth.

Felux AK, Denger K, Weiss M, Cook AM, Schleheck D.

J Bacteriol. 2013 Jun;195(12):2921-30. doi: 10.1128/JB.00307-13. Epub 2013 Apr 19.

17.

Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16.

Weinitschke S, Hollemeyer K, Kusian B, Bowien B, Smits TH, Cook AM.

J Biol Chem. 2010 Nov 12;285(46):35249-54. doi: 10.1074/jbc.M110.127043. Epub 2010 Aug 6.

18.

Roseovarius sp. strain 217: aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase.

Baldock MI, Denger K, Smits TH, Cook AM.

FEMS Microbiol Lett. 2007 Jun;271(2):202-6. Epub 2007 Apr 10.

Supplemental Content

Support Center