Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107


Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen.

Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NA, Brown AJ.

Cell Microbiol. 2012 Sep;14(9):1319-35. doi: 10.1111/j.1462-5822.2012.01813.x. Epub 2012 Jun 5.


Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans.

Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJ.

Proteomics. 2012 Nov;12(21):3164-79. doi: 10.1002/pmic.201200228.


Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells.

Ene IV, Cheng SC, Netea MG, Brown AJ.

Infect Immun. 2013 Jan;81(1):238-48. doi: 10.1128/IAI.01092-12. Epub 2012 Oct 31.


Sfp1 and Rtg3 reciprocally modulate carbon source-conditional stress adaptation in the pathogenic yeast Candida albicans.

Kastora SL, Herrero-de-Dios C, Avelar GM, Munro CA, Brown AJP.

Mol Microbiol. 2017 Aug;105(4):620-636. doi: 10.1111/mmi.13722. Epub 2017 Jun 19.


Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ.

MBio. 2015 Jul 28;6(4):e00986. doi: 10.1128/mBio.00986-15.


Stress adaptation in a pathogenic fungus.

Brown AJ, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, Potrykus J, Ballou ER, Childers DS, Shahana S, Leach MD.

J Exp Biol. 2014 Jan 1;217(Pt 1):144-55. doi: 10.1242/jeb.088930. Review.


The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH.

Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC.

MBio. 2011 May 17;2(3):e00055-11. doi: 10.1128/mBio.00055-11. Print 2011.


Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels.

Brown AJ, Brown GD, Netea MG, Gow NA.

Trends Microbiol. 2014 Nov;22(11):614-22. doi: 10.1016/j.tim.2014.07.001. Epub 2014 Jul 31. Review.


Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence.

Delgado-Silva Y, Vaz C, Carvalho-Pereira J, Carneiro C, Nogueira E, Correia A, Carreto L, Silva S, Faustino A, Pais C, Oliveira R, Sampaio P.

PLoS One. 2014 Jan 23;9(1):e86270. doi: 10.1371/journal.pone.0086270. eCollection 2014.


The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans.

Sandai D, Yin Z, Selway L, Stead D, Walker J, Leach MD, Bohovych I, Ene IV, Kastora S, Budge S, Munro CA, Odds FC, Gow NA, Brown AJ.

MBio. 2012 Dec 11;3(6). pii: e00495-12. doi: 10.1128/mBio.00495-12. Erratum in: MBio. 2015;6(1). pii: e02489-14. doi: 10.1128/mBio.02489-14.


Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae.

Zhang J, Silao FG, Bigol UG, Bungay AA, Nicolas MG, Heitman J, Chen YL.

PLoS One. 2012;7(8):e44192. doi: 10.1371/journal.pone.0044192. Epub 2012 Aug 31.


The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence.

Childers DS, Raziunaite I, Mol Avelar G, Mackie J, Budge S, Stead D, Gow NA, Lenardon MD, Ballou ER, MacCallum DM, Brown AJ.

PLoS Pathog. 2016 Apr 13;12(4):e1005566. doi: 10.1371/journal.ppat.1005566. eCollection 2016 Apr.


Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell wall chitin deposition.

Bahnan W, Koussa J, Younes S, Abi Rizk M, Khalil B, El Sitt S, Hanna S, El-Sibai M, Khalaf RA.

Mycopathologia. 2012 Aug;174(2):107-19. doi: 10.1007/s11046-012-9533-z. Epub 2012 Mar 6.


Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence.

Qu Y, Jelicic B, Pettolino F, Perry A, Lo TL, Hewitt VL, Bantun F, Beilharz TH, Peleg AY, Lithgow T, Djordjevic JT, Traven A.

Eukaryot Cell. 2012 Apr;11(4):532-44. doi: 10.1128/EC.05292-11. Epub 2012 Jan 27.


Glucose promotes stress resistance in the fungal pathogen Candida albicans.

Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, Brown AJ.

Mol Biol Cell. 2009 Nov;20(22):4845-55. doi: 10.1091/mbc.E09-01-0002. Epub 2009 Sep 16.


Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans.

Staab JF, Datta K, Rhee P.

PLoS One. 2013 Nov 8;8(11):e80842. doi: 10.1371/journal.pone.0080842. eCollection 2013.


Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation.

Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR.

Eukaryot Cell. 2011 Dec;10(12):1660-9. doi: 10.1128/EC.05126-11. Epub 2011 Jun 10.


The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

Li X, Du W, Zhao J, Zhang L, Zhu Z, Jiang L.

FEMS Yeast Res. 2010 Jun;10(4):441-51. doi: 10.1111/j.1567-1364.2010.00626.x. Epub 2010 Mar 12.


Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.

Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, Brown AJ, Hube B.

PLoS One. 2012;7(6):e38584. doi: 10.1371/journal.pone.0038584. Epub 2012 Jun 7.


PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, Perfect JR, Cowen LE.

PLoS Pathog. 2010 Aug 26;6(8):e1001069. doi: 10.1371/journal.ppat.1001069.

Supplemental Content

Support Center