Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients.

Xia K, Zhan M, Wan D, Wei GW.

J Comput Phys. 2012 Feb 1;231(4):1440-1461. Epub 2011 Nov 6.

2.

MIB Galerkin method for elliptic interface problems.

Xia K, Zhan M, Wei GW.

J Comput Appl Math. 2014 Dec 15;272:195-220.

3.
4.

MIB method for elliptic equations with multi-material interfaces.

Xia K, Zhan M, Wei GW.

J Comput Phys. 2011 Jun 1;230(12):4588-4615.

5.

Second order Method for Solving 3D Elasticity Equations with Complex Interfaces.

Wang B, Xia K, Wei GW.

J Comput Phys. 2015 Aug 1;294:405-438.

6.

WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS.

Mu L, Wang J, Wei G, Ye X, Zhao S.

J Comput Phys. 2013 Oct 1;250:106-125.

7.

Matched Interface and Boundary Method for Elasticity Interface Problems.

Wang B, Xia K, Wei GW.

J Comput Appl Math. 2015 Sep 1;285:203-225.

8.
9.

An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods.

Li Z, Song P.

Commun Comput Phys. 2012;12(2):515-527. Epub 2012 Feb 20.

10.

Exact subgrid interface correction schemes for elliptic interface problems.

Huh JS, Sethian JA.

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9874-9. doi: 10.1073/pnas.0707997105. Epub 2008 Jul 17.

11.
12.

Second-order Poisson Nernst-Planck solver for ion channel transport.

Zheng Q, Chen D, Wei GW.

J Comput Phys. 2011 Jun;230(13):5239-5262.

13.

Computational methods for optical molecular imaging.

Chen D, Wei GW, Cong WX, Wang G.

Commun Numer Methods Eng. 2009;25(12):1137-1161.

14.
15.

Some new analysis results for a class of interface problems.

Li Z, Wang L, Aspinwall E, Cooper R, Kuberry P, Sanders A, Zeng K.

Math Methods Appl Sci. 2015 Dec 1;38(18):4530-4539. Epub 2013 Jun 20.

16.

A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.

Ying W, Henriquez CS.

J Comput Phys. 2007 Dec 10;227(2):1046-1074. Epub 2007 Sep 5.

17.

A constrained backpropagation approach for the adaptive solution of partial differential equations.

Rudd K, Di Muro G, Ferrari S.

IEEE Trans Neural Netw Learn Syst. 2014 Mar;25(3):571-84. doi: 10.1109/TNNLS.2013.2277601.

PMID:
24807452
18.

A numerical technique for linear elliptic partial differential equations in polygonal domains.

Hashemzadeh P, Fokas AS, Smitheman SA.

Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140747.

19.

Accurate and efficient numerical solutions for elliptic obstacle problems.

Lee P, Kim TW, Kim S.

J Inequal Appl. 2017;2017(1):34. doi: 10.1186/s13660-017-1309-z. Epub 2017 Feb 3.

20.

Elastic-plastic contact law for simulation of tablet crushing using the biharmonic equation.

Ahmat N, Ugail H, González Castro G.

Int J Pharm. 2012 May 10;427(2):170-6. doi: 10.1016/j.ijpharm.2012.01.053. Epub 2012 Feb 2.

PMID:
22326300

Supplemental Content

Support Center