Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 145

1.

Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster.

Bocker MT, Tuorto F, Raddatz G, Musch T, Yang FC, Xu M, Lyko F, Breiling A.

Nat Commun. 2012 May 8;3:818. doi: 10.1038/ncomms1826.

2.

Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.

Putiri EL, Tiedemann RL, Thompson JJ, Liu C, Ho T, Choi JH, Robertson KD.

Genome Biol. 2014 Jun 23;15(6):R81. doi: 10.1186/gb-2014-15-6-r81.

3.

Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development.

Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, Faull KF, Lyko F, Jaenisch R.

Dev Cell. 2013 Feb 11;24(3):310-23. doi: 10.1016/j.devcel.2012.12.015. Epub 2013 Jan 24.

4.

Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.

Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y.

Nature. 2010 Aug 26;466(7310):1129-33. doi: 10.1038/nature09303.

5.

Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A.

Science. 2009 May 15;324(5929):930-5. doi: 10.1126/science.1170116. Epub 2009 Apr 16.

6.

5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.

Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J.

Nat Commun. 2011;2:241. doi: 10.1038/ncomms1240.

PMID:
21407207
7.

Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.

Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y.

Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.

8.

5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.

Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, Kuan S, Edsall LE, Zhao BS, Xu GL, He C, Ren B.

Mol Cell. 2014 Oct 23;56(2):286-97. doi: 10.1016/j.molcel.2014.08.026. Epub 2014 Sep 25.

9.

Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells.

Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A.

Cell Stem Cell. 2011 Feb 4;8(2):200-13. doi: 10.1016/j.stem.2011.01.008.

10.

Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells.

Neri F, Incarnato D, Krepelova A, Rapelli S, Pagnani A, Zecchina R, Parlato C, Oliviero S.

Genome Biol. 2013 Aug 29;14(8):R91. doi: 10.1186/gb-2013-14-8-r91.

11.

Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2.

Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A.

Nature. 2010 Dec 9;468(7325):839-43. doi: 10.1038/nature09586.

12.

Epigenetic regulation of human adipose-derived stem cells differentiation.

Daniunaite K, Serenaite I, Misgirdaite R, Gordevicius J, Unguryte A, Fleury-Cappellesso S, Bernotiene E, Jarmalaite S.

Mol Cell Biochem. 2015 Dec;410(1-2):111-20. doi: 10.1007/s11010-015-2543-7. Epub 2015 Aug 26.

PMID:
26307369
13.

Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.

Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG.

Mol Cell. 2011 May 20;42(4):451-64. doi: 10.1016/j.molcel.2011.04.005. Epub 2011 Apr 21.

14.

PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos.

Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T.

Nature. 2012 Jun 3;486(7403):415-9. doi: 10.1038/nature11093.

PMID:
22722204
15.

Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.

He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL.

Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.

16.

Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.

Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W.

Nature. 2011 May 19;473(7347):398-402. doi: 10.1038/nature10008. Epub 2011 Apr 3.

PMID:
21460836
17.

Structural insight into substrate preference for TET-mediated oxidation.

Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, Lou Z, Zhang L, Li W, Gong W, Liu M, Sun C, Yin X, Li J, Tan X, Wang P, Wang Y, Fang D, Cui Q, Yang P, He C, Jiang H, Luo C, Xu Y.

Nature. 2015 Nov 5;527(7576):118-22. doi: 10.1038/nature15713. Epub 2015 Oct 28.

PMID:
26524525
18.

The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.

Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL.

Nature. 2011 Sep 4;477(7366):606-10. doi: 10.1038/nature10443.

PMID:
21892189
19.

Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.

Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A, Levine RL, Nik S, Chen EI, Abeliovich A.

Nature. 2012 Aug 30;488(7413):652-5. doi: 10.1038/nature11333.

20.

Oct4 and the small molecule inhibitor, SC1, regulates Tet2 expression in mouse embryonic stem cells.

Wu Y, Guo Z, Liu Y, Tang B, Wang Y, Yang L, Du J, Zhang Y.

Mol Biol Rep. 2013 Apr;40(4):2897-906. doi: 10.1007/s11033-012-2305-5. Epub 2012 Dec 20.

PMID:
23254757

Supplemental Content

Support Center