Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94


Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii infection.

Li Z, Zhao ZJ, Zhu XQ, Ren QS, Nie FF, Gao JM, Gao XJ, Yang TB, Zhou WL, Shen JL, Wang Y, Lu FL, Chen XG, Hide G, Ayala FJ, Lun ZR.

PLoS One. 2012;7(4):e35834. doi: 10.1371/journal.pone.0035834. Epub 2012 Apr 25.


Lower expression of inducible nitric oxide synthase and higher expression of arginase in rat alveolar macrophages are linked to their susceptibility to Toxoplasma gondii infection.

Zhao ZJ, Zhang J, Wei J, Li Z, Wang T, Yi SQ, Shen JL, Yang TB, Hide G, Lun ZR.

PLoS One. 2013 May 15;8(5):e63650. doi: 10.1371/journal.pone.0063650. Print 2013.


Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production.

Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ.

J Immunol. 2001 Feb 15;166(4):2173-7. Erratum in: J Immunol 2001 Apr 1;166(7):4788.


MAP kinase phosphatase-2 plays a key role in the control of infection with Toxoplasma gondii by modulating iNOS and arginase-1 activities in mice.

Woods S, Schroeder J, McGachy HA, Plevin R, Roberts CW, Alexander J.

PLoS Pathog. 2013 Aug;9(8):e1003535. doi: 10.1371/journal.ppat.1003535. Epub 2013 Aug 15.


Investigation of infectivity of neonates and adults from different rat strains to Toxoplasma gondii Prugniaud shows both variation which correlates with iNOS and Arginase-1 activity and increased susceptibility of neonates to infection.

Gao JM, Yi SQ, Wu MS, Geng GQ, Shen JL, Lu FL, Hide G, Lai DH, Lun ZR.

Exp Parasitol. 2015 Feb;149:47-53. doi: 10.1016/j.exppara.2014.12.008. Epub 2014 Dec 23.


IL-13 pre-treatment of murine peritoneal macrophages increases their anti-Toxoplasma gondii activity induced by lipopolysaccharides.

Authier H, Cassaing S, Bans V, Batigne P, Bessières MH, Pipy B.

Int J Parasitol. 2008 Mar;38(3-4):341-52. Epub 2007 Sep 6.


Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect.

Duleu S, Vincendeau P, Courtois P, Semballa S, Lagroye I, Daulouède S, Boucher JL, Wilson KT, Veyret B, Gobert AP.

J Immunol. 2004 May 15;172(10):6298-303.


Nitric oxide inhibition after Toxoplasma gondii infection of chicken macrophage cell lines.

Guillermo LV, DaMatta RA.

Poult Sci. 2004 May;83(5):776-82.


Toxoplasma gondii infection in the peritoneal macrophages of rats treated with glucocorticoids.

Wang T, Gao JM, Yi SQ, Geng GQ, Gao XJ, Shen JL, Lu FL, Wen YZ, Hide G, Lun ZR.

Parasitol Res. 2014 Jan;113(1):351-8. doi: 10.1007/s00436-013-3661-3. Epub 2013 Nov 19.


Toxoplasma gondii infection induces apoptosis in noninfected macrophages: role of nitric oxide and other soluble factors.

Nishikawa Y, Kawase O, Vielemeyer O, Suzuki H, Joiner KA, Xuan X, Nagasawa H.

Parasite Immunol. 2007 Jul;29(7):375-85.


MKP-1 switches arginine metabolism from nitric oxide synthase to arginase following endotoxin challenge.

Nelin LD, Wang X, Zhao Q, Chicoine LG, Young TL, Hatch DM, English BK, Liu Y.

Am J Physiol Cell Physiol. 2007 Aug;293(2):C632-40. Epub 2007 Apr 18.


Comparative studies of macrophage-biased responses in mice to infection with Toxoplasma gondii ToxoDB #9 strains of different virulence isolated from China.

Zhang AM, Shen Q, Li M, Xu XC, Chen H, Cai YH, Luo QL, Chu DY, Yu L, Du J, Lun ZR, Wang Y, Sha Q, Shen JL.

Parasit Vectors. 2013 Oct 26;6(1):308. doi: 10.1186/1756-3305-6-308.


Polarization of macrophages induced by Toxoplasma gondii and its impact on abnormal pregnancy in rats.

Kong L, Zhang Q, Chao J, Wen H, Zhang Y, Chen H, Pappoe F, Zhang A, Xu X, Cai Y, Li M, Luo Q, Zhang L, Shen J.

Acta Trop. 2015 Mar;143:1-7. doi: 10.1016/j.actatropica.2014.12.001. Epub 2014 Dec 9.


Supplemental Content

Support Center