Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 285

1.

Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts.

de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JF, Pescarmona PP, Jacobs PA, Sels BF.

J Am Chem Soc. 2012 Jun 20;134(24):10089-101. doi: 10.1021/ja301678w. Epub 2012 Jun 8.

PMID:
22550936
2.

Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid.

Guo Q, Fan F, Pidko EA, van der Graaff WN, Feng Z, Li C, Hensen EJ.

ChemSusChem. 2013 Aug;6(8):1352-6. doi: 10.1002/cssc.201300160. Epub 2013 Jun 17. No abstract available.

PMID:
23776010
3.

Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution.

Hayashi Y, Sasaki Y.

Chem Commun (Camb). 2005 Jun 7;(21):2716-8. Epub 2005 Apr 13.

PMID:
15917930
4.

Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.

Dapsens PY, Mondelli C, Pérez-Ramírez J.

ChemSusChem. 2013 May;6(5):831-9. doi: 10.1002/cssc.201200703. Epub 2013 Apr 3.

PMID:
23554234
5.

Catalytic Fast Pyrolysis of Lignin over High-Surface-Area Mesoporous Aluminosilicates: Effect of Porosity and Acidity.

Custodis VB, Karakoulia SA, Triantafyllidis KS, van Bokhoven JA.

ChemSusChem. 2016 May 23;9(10):1134-45. doi: 10.1002/cssc.201600105. Epub 2016 Apr 15.

PMID:
27079742
6.

Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures.

Orazov M, Davis ME.

Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11777-82. doi: 10.1073/pnas.1516466112. Epub 2015 Sep 8.

7.

Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

Yang L, Yang X, Tian E, Lin H.

ChemSusChem. 2016 Jan 8;9(1):36-41. doi: 10.1002/cssc.201500855. Epub 2015 Dec 18.

PMID:
26685114
8.

Highly selective BTX from catalytic fast pyrolysis of lignin over supported mesoporous silica.

Elfadly AM, Zeid IF, Yehia FZ, Rabie AM, Aboualala MM, Park SE.

Int J Biol Macromol. 2016 Oct;91:278-93. doi: 10.1016/j.ijbiomac.2016.05.053. Epub 2016 May 16.

PMID:
27196367
9.

Mesoporous siliconiobium phosphate as a pure Brønsted acid catalyst with excellent performance for the dehydration of glycerol to acrolein.

Choi Y, Park DS, Yun HJ, Baek J, Yun D, Yi J.

ChemSusChem. 2012 Dec;5(12):2460-8. doi: 10.1002/cssc.201200587. Epub 2012 Nov 6.

PMID:
23132784
10.

Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

Tolborg S, Sádaba I, Osmundsen CM, Fristrup P, Holm MS, Taarning E.

ChemSusChem. 2015 Feb;8(4):613-7. doi: 10.1002/cssc.201403057. Epub 2015 Jan 21.

PMID:
25605624
11.

A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol.

Zhang Y, Wang A, Zhang T.

Chem Commun (Camb). 2010 Feb 14;46(6):862-4. doi: 10.1039/b919182h. Epub 2009 Dec 8.

PMID:
20107631
12.

Acidic amorphous silica prepared from iron oxide of bacterial origin.

Hashimoto H, Itadani A, Kudoh T, Kuroda Y, Seno M, Kusano Y, Ikeda Y, Nakanishi M, Fujii T, Takada J.

ACS Appl Mater Interfaces. 2013 Feb;5(3):518-23. doi: 10.1021/am302837p. Epub 2013 Feb 4.

PMID:
23331569
13.

Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.

Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG.

J Am Chem Soc. 2013 Mar 13;135(10):3997-4006. doi: 10.1021/ja3122763. Epub 2013 Mar 1.

PMID:
23432136
14.

Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion.

Olson ES, Sharma RK, Aulich TR.

Appl Biochem Biotechnol. 2004 Spring;113-116:913-32.

PMID:
15054242
15.

Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica.

Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H.

J Phys Chem B. 2005 Jan 27;109(3):1141-7.

PMID:
16851073
16.

Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.

Wu Z, Lv Y, Xia Y, Webley PA, Zhao D.

J Am Chem Soc. 2012 Feb 1;134(4):2236-45. doi: 10.1021/ja209753w. Epub 2012 Jan 17.

PMID:
22257228
17.

A tailored catalyst for the sustainable conversion of glycerol to acrolein: mechanistic aspect of sequential dehydration.

Yun D, Kim TY, Park DS, Yun YS, Han JW, Yi J.

ChemSusChem. 2014 Aug;7(8):2193-201. doi: 10.1002/cssc.201402057. Epub 2014 Jul 8.

PMID:
25045005
18.

Novel mesoporous silica-perfluorosulfonic acid hybrids as strong heterogeneous Brønsted catalysts.

Macquarrie DJ, Tavener SJ, Harmer MA.

Chem Commun (Camb). 2005 May 14;(18):2363-5. Epub 2005 Mar 16.

PMID:
15877129
19.

Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

Viswanadham B, Srikanth A, Kumar VP, Chary KV.

J Nanosci Nanotechnol. 2015 Jul;15(7):5391-402.

PMID:
26373149

Supplemental Content

Support Center