Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury.

Wang X, Xia T, Duch MC, Ji Z, Zhang H, Li R, Sun B, Lin S, Meng H, Liao YP, Wang M, Song TB, Yang Y, Hersam MC, Nel AE.

Nano Lett. 2012 Jun 13;12(6):3050-61. doi: 10.1021/nl300895y. Epub 2012 May 4.

2.

Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials.

Wang X, Duch MC, Mansukhani N, Ji Z, Liao YP, Wang M, Zhang H, Sun B, Chang CH, Li R, Lin S, Meng H, Xia T, Hersam MC, Nel AE.

ACS Nano. 2015 Mar 24;9(3):3032-43. doi: 10.1021/nn507243w. Epub 2015 Feb 18.

3.

Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung.

Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, Chung CH, George S, Zhang H, Wang M, Li N, Yang Y, Castranova V, Mitra S, Bonner JC, Nel AE.

ACS Nano. 2011 Dec 27;5(12):9772-87. doi: 10.1021/nn2033055. Epub 2011 Nov 22.

4.

Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity.

Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao YP, Wang M, Li Z, Hwang AA, Song TB, Xu R, Yang Y, Zink JI, Nel AE, Xia T.

ACS Nano. 2013 Mar 26;7(3):2352-68. doi: 10.1021/nn305567s. Epub 2013 Feb 28.

5.

Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro.

Gasser M, Wick P, Clift MJ, Blank F, Diener L, Yan B, Gehr P, Krug HF, Rothen-Rutishauser B.

Part Fibre Toxicol. 2012 May 24;9:17. doi: 10.1186/1743-8977-9-17.

6.

Evaluation of biocompatible dispersants for carbon nanotube toxicity tests.

Kim JS, Song KS, Lee JH, Yu IJ.

Arch Toxicol. 2011 Dec;85(12):1499-508. doi: 10.1007/s00204-011-0723-0. Epub 2011 Jun 9.

PMID:
21656221
7.

Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes.

Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW.

Part Fibre Toxicol. 2011 Jul 22;8:21. doi: 10.1186/1743-8977-8-21.

8.

Investigation of the pulmonary bioactivity of double-walled carbon nanotubes.

Sager TM, Wolfarth MW, Battelli LA, Leonard SS, Andrew M, Steinbach T, Endo M, Tsuruoka S, Porter DW, Castranova V.

J Toxicol Environ Health A. 2013;76(15):922-36. doi: 10.1080/15287394.2013.825571.

PMID:
24156695
9.

Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells.

Yao MZ, Hu YL, Sheng XX, Lin J, Ling D, Gao JQ.

Chem Biol Interact. 2016 Apr 25;250:47-58. doi: 10.1016/j.cbi.2016.03.013. Epub 2016 Mar 10.

PMID:
26970603
10.

NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes.

Sun B, Wang X, Ji Z, Wang M, Liao YP, Chang CH, Li R, Zhang H, Nel AE, Xia T.

Small. 2015 May 6;11(17):2087-97. doi: 10.1002/smll.201402859. Epub 2015 Jan 12.

11.

Nisin adsorption to hydrophobic surfaces coated with the PEO-PPO-PEO triblock surfactant Pluronic F108.

Tai YC, Joshi P, McGuire J, Neff JA.

J Colloid Interface Sci. 2008 Jun 1;322(1):112-8. doi: 10.1016/j.jcis.2008.02.053. Epub 2008 Mar 4.

12.

Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice.

Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM.

Part Fibre Toxicol. 2011 Aug 18;8:24. doi: 10.1186/1743-8977-8-24.

13.

Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes.

Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW.

Part Fibre Toxicol. 2013 Jul 30;10:33. doi: 10.1186/1743-8977-10-33.

14.

Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-╬▓/Smad signaling pathway.

Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, Wang L, Bai R, Chen Z, Zhao Y, Chen C.

Small. 2013 Nov 25;9(22):3799-811. doi: 10.1002/smll.201300607. Epub 2013 May 6.

PMID:
23650105
15.

Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro.

Bardi G, Tognini P, Ciofani G, Raffa V, Costa M, Pizzorusso T.

Nanomedicine. 2009 Mar;5(1):96-104. doi: 10.1016/j.nano.2008.06.008. Epub 2008 Aug 8.

PMID:
18693142
16.

Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.

Wang R, Hughes T, Beck S, Vakil S, Li S, Pantano P, Draper RK.

Nanotoxicology. 2013 Nov;7(7):1272-81. doi: 10.3109/17435390.2012.736547. Epub 2012 Oct 29.

17.

Nisin antimicrobial activity and structural characteristics at hydrophobic surfaces coated with the PEO-PPO-PEO triblock surfactant Pluronic F108.

Tai YC, McGuire J, Neff JA.

J Colloid Interface Sci. 2008 Jun 1;322(1):104-11. doi: 10.1016/j.jcis.2008.02.062. Epub 2008 Mar 6.

18.

A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.

Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL.

Crit Rev Toxicol. 2006 Mar;36(3):189-217. Review.

PMID:
16686422
19.

Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies.

Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, Rojanasakul Y.

Part Fibre Toxicol. 2010 Oct 19;7:31. doi: 10.1186/1743-8977-7-31.

20.

Antifibrotic activity of conjugates based on amphiphilic pluronic F68 and hydrophobic pluronic L31 with hyaluronate-endo-╬▓-N-acetylhexosaminidase in pulmonary fibrosis.

Skurikhin EG, Reztsova AM, Ermakova NN, Krupin VA, Pershina OV, Khmelevskaya ES, Artamonov AV, Bekarev AA, Madonov PG, Kinsht DN, Reykhard DV, Goldberg VE, Dygai AM.

Bull Exp Biol Med. 2014 May;157(1):5-9. doi: 10.1007/s10517-014-2478-0. Epub 2014 Jun 8.

PMID:
24906958

Supplemental Content

Support Center