Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Single-ion nuclear clock for metrology at the 19th decimal place.

Campbell CJ, Radnaev AG, Kuzmich A, Dzuba VA, Flambaum VV, Derevianko A.

Phys Rev Lett. 2012 Mar 23;108(12):120802. Epub 2012 Mar 22.

PMID:
22540568
2.

A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place.

Predehl K, Grosche G, Raupach SM, Droste S, Terra O, Alnis J, Legero T, Hänsch TW, Udem T, Holzwarth R, Schnatz H.

Science. 2012 Apr 27;336(6080):441-4. doi: 10.1126/science.1218442.

3.

Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place.

Rosenband T, Hume DB, Schmidt PO, Chou CW, Brusch A, Lorini L, Oskay WH, Drullinger RE, Fortier TM, Stalnaker JE, Diddams SA, Swann WC, Newbury NR, Itano WM, Wineland DJ, Bergquist JC.

Science. 2008 Mar 28;319(5871):1808-12. doi: 10.1126/science.1154622. Epub 2008 Mar 6.

4.

Single-atom optical clock with high accuracy.

Oskay WH, Diddams SA, Donley EA, Fortier TM, Heavner TP, Hollberg L, Itano WM, Jefferts SR, Delaney MJ, Kim K, Levi F, Parker TE, Bergquist JC.

Phys Rev Lett. 2006 Jul 14;97(2):020801. Epub 2006 Jul 14.

PMID:
16907426
5.

Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.

Nicholson TL, Martin MJ, Williams JR, Bloom BJ, Bishof M, Swallows MD, Campbell SL, Ye J.

Phys Rev Lett. 2012 Dec 7;109(23):230801. Epub 2012 Dec 5.

PMID:
23368177
6.

Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

Yudin VI, Taichenachev AV, Derevianko A.

Phys Rev Lett. 2014 Dec 5;113(23):233003. Epub 2014 Dec 3.

PMID:
25526127
7.

Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.

Taichenachev AV, Yudin VI, Ovsiannikov VD, Pal'chikov VG, Oates CW.

Phys Rev Lett. 2008 Nov 7;101(19):193601. Epub 2008 Nov 4.

PMID:
19113267
8.

Ultrastable optical clock with neutral atoms in an engineered light shift trap.

Katori H, Takamoto M, Pal'chikov VG, Ovsiannikov VD.

Phys Rev Lett. 2003 Oct 24;91(17):173005. Epub 2003 Oct 24.

PMID:
14611343
9.

Frequency comparison of two high-accuracy Al+ optical clocks.

Chou CW, Hume DB, Koelemeij JC, Wineland DJ, Rosenband T.

Phys Rev Lett. 2010 Feb 19;104(7):070802. Epub 2010 Feb 17.

PMID:
20366869
10.

High-accuracy optical clock based on the octupole transition in 171Yb+.

Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E.

Phys Rev Lett. 2012 Mar 2;108(9):090801. Epub 2012 Feb 29.

PMID:
22463621
11.

An optical clock based on a single trapped 199Hg+ ion.

Diddams SA, Udem T, Bergquist JC, Curtis EA, Drullinger RE, Hollberg L, Itano WM, Lee WD, Oates CW, Vogel KR, Wineland DJ.

Science. 2001 Aug 3;293(5531):825-8. Epub 2001 Jul 12.

12.

Differential light-shift cancellation in a magnetic-field-insensitive transition of 87rb.

Chicireanu R, Nelson KD, Olmschenk S, Lundblad N, Derevianko A, Porto JV.

Phys Rev Lett. 2011 Feb 11;106(6):063002. Epub 2011 Feb 8.

PMID:
21405465
13.

Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty.

Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E.

Phys Rev Lett. 2016 Feb 12;116(6):063001. doi: 10.1103/PhysRevLett.116.063001. Epub 2016 Feb 8.

PMID:
26918984
14.

Proposed experimental method to determine alpha sensitivity of splitting between ground and 7.6 eV isomeric states in 229Th.

Berengut JC, Dzuba VA, Flambaum VV, Porsev SG.

Phys Rev Lett. 2009 May 29;102(21):210801. Epub 2009 May 29.

PMID:
19519091
15.

Observation of the deexcitation of the (229m)Th nuclear isomer.

Zhao X, Martinez de Escobar YN, Rundberg R, Bond EM, Moody A, Vieira DJ.

Phys Rev Lett. 2012 Oct 19;109(16):160801. Epub 2012 Oct 18.

PMID:
23215066
16.

Direct detection of the (229)Th nuclear clock transition.

von der Wense L, Seiferle B, Laatiaoui M, Neumayr JB, Maier HJ, Wirth HF, Mokry C, Runke J, Eberhardt K, Düllmann CE, Trautmann NG, Thirolf PG.

Nature. 2016 May 5;533(7601):47-51. doi: 10.1038/nature17669.

PMID:
27147026
17.

Electric quadrupole shift cancellation in single-ion optical frequency standards.

Dubé P, Madej AA, Bernard JE, Marmet L, Boulanger JS, Cundy S.

Phys Rev Lett. 2005 Jul 15;95(3):033001. Epub 2005 Jul 12.

PMID:
16090738
18.

Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.

Swallows MD, Campbell GK, Ludlow AD, Boyd MM, Thomsen JW, Martin MJ, Blatt S, Nicholson TL, Ye J.

IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Mar;57(3):574-82. doi: 10.1109/TUFFC.2010.1449.

PMID:
20211772
19.

Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.

Beloy K, Hinkley N, Phillips NB, Sherman JA, Schioppo M, Lehman J, Feldman A, Hanssen LM, Oates CW, Ludlow AD.

Phys Rev Lett. 2014 Dec 31;113(26):260801. Epub 2014 Dec 24.

PMID:
25615296
20.

An optical lattice clock.

Takamoto M, Hong FL, Higashi R, Katori H.

Nature. 2005 May 19;435(7040):321-4.

PMID:
15902252

Supplemental Content

Support Center