Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity.

Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR.

PLoS Comput Biol. 2012;8(4):e1002477. doi: 10.1371/journal.pcbi.1002477. Epub 2012 Apr 19.

2.

The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling.

Cushing PR, Fellows A, Villone D, Boisguérin P, Madden DR.

Biochemistry. 2008 Sep 23;47(38):10084-98. doi: 10.1021/bi8003928. Epub 2008 Aug 29.

3.

A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression.

Cheng J, Moyer BD, Milewski M, Loffing J, Ikeda M, Mickle JE, Cutting GR, Li M, Stanton BA, Guggino WB.

J Biol Chem. 2002 Feb 1;277(5):3520-9. Epub 2001 Nov 13.

4.

Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

Amacher JF, Zhao R, Spaller MR, Madden DR.

PLoS One. 2014 Aug 19;9(8):e103650. doi: 10.1371/journal.pone.0103650. eCollection 2014.

5.

Association of the cystic fibrosis transmembrane regulator with CAL: structural features and molecular dynamics.

Piserchio A, Fellows A, Madden DR, Mierke DF.

Biochemistry. 2005 Dec 13;44(49):16158-66.

PMID:
16331976
6.

Targeting CAL as a negative regulator of DeltaF508-CFTR cell-surface expression: an RNA interference and structure-based mutagenetic approach.

Wolde M, Fellows A, Cheng J, Kivenson A, Coutermarsh B, Talebian L, Karlson K, Piserchio A, Mierke DF, Stanton BA, Guggino WB, Madden DR.

J Biol Chem. 2007 Mar 16;282(11):8099-109. Epub 2006 Dec 11.

7.

Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on ΔF508 cystic fibrosis transmembrane conductance regulator.

Luciani A, Villella VR, Esposito S, Gavina M, Russo I, Silano M, Guido S, Pettoello-Mantovani M, Carnuccio R, Scholte B, De Matteis A, Maiuri MC, Raia V, Luini A, Kroemer G, Maiuri L.

Autophagy. 2012 Nov;8(11):1657-72. doi: 10.4161/auto.21483. Epub 2012 Aug 9.

8.

Crystallization and preliminary diffraction analysis of the CAL PDZ domain in complex with a selective peptide inhibitor.

Amacher JF, Cushing PR, Weiner JA, Madden DR.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 May 1;67(Pt 5):600-3. doi: 10.1107/S1744309111009985. Epub 2011 Apr 28.

9.

Stereochemical preferences modulate affinity and selectivity among five PDZ domains that bind CFTR: comparative structural and sequence analyses.

Amacher JF, Cushing PR, Brooks L 3rd, Boisguerin P, Madden DR.

Structure. 2014 Jan 7;22(1):82-93. doi: 10.1016/j.str.2013.09.019. Epub 2013 Nov 7.

10.

Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening.

Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, Verkman AS.

J Clin Invest. 2005 Sep;115(9):2564-71. Epub 2005 Aug 25.

11.
12.

Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

Serohijos AW, Hegedus T, Riordan JR, Dokholyan NV.

PLoS Comput Biol. 2008 Feb 29;4(2):e1000008. doi: 10.1371/journal.pcbi.1000008.

13.

Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.

Hall JD, Wang H, Byrnes LJ, Shanker S, Wang K, Efremov IV, Chong PA, Forman-Kay JD, Aulabaugh AE.

Protein Sci. 2016 Feb;25(2):360-73. doi: 10.1002/pro.2821. Epub 2016 Jan 12.

14.

Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia.

Sun F, Mi Z, Condliffe SB, Bertrand CA, Gong X, Lu X, Zhang R, Latoche JD, Pilewski JM, Robbins PD, Frizzell RA.

FASEB J. 2008 Sep;22(9):3255-63. doi: 10.1096/fj.07-105338. Epub 2008 Jun 12.

15.

Syntaxin 6 and CAL mediate the degradation of the cystic fibrosis transmembrane conductance regulator.

Cheng J, Cebotaru V, Cebotaru L, Guggino WB.

Mol Biol Cell. 2010 Apr 1;21(7):1178-87. doi: 10.1091/mbc.E09-03-0229. Epub 2010 Feb 3.

16.

Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells.

Guerra L, Fanelli T, Favia M, Riccardi SM, Busco G, Cardone RA, Carrabino S, Weinman EJ, Reshkin SJ, Conese M, Casavola V.

J Biol Chem. 2005 Dec 9;280(49):40925-33. Epub 2005 Oct 3.

17.

Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.

Costa de Beauregard MA, Edelman A, Chesnoy-Marchais D, Tondelier D, Lapillonne A, El Marjou F, Robine S, Louvard D.

Eur J Cell Biol. 2000 Nov;79(11):795-802.

PMID:
11139142
18.

Stereochemical determinants of C-terminal specificity in PDZ peptide-binding domains: a novel contribution of the carboxylate-binding loop.

Amacher JF, Cushing PR, Bahl CD, Beck T, Madden DR.

J Biol Chem. 2013 Feb 15;288(7):5114-26. doi: 10.1074/jbc.M112.401588. Epub 2012 Dec 15.

19.

Synthesis and structure-activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis.

Pesce E, Bellotti M, Liessi N, Guariento S, Damonte G, Cichero E, Galatini A, Salis A, Gianotti A, Pedemonte N, Zegarra-Moran O, Fossa P, Galietta LJ, Millo E.

Eur J Med Chem. 2015 Jun 24;99:14-35. doi: 10.1016/j.ejmech.2015.05.030. Epub 2015 May 28.

PMID:
26041577
20.

In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.

Wu Y, Wang S, Li C.

J Vis Exp. 2012 Aug 13;(66). pii: 4091. doi: 10.3791/4091.

Supplemental Content

Support Center