Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 462

1.

Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.

Wang L, Deng X, Dai PX, Guo YG, Wang D, Wan LJ.

Phys Chem Chem Phys. 2012 May 28;14(20):7330-6. doi: 10.1039/c2cp40595d. Epub 2012 Apr 24.

PMID:
22526455
2.

In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li(+)-ion batteries.

Seidl L, Martens S, Ma J, Stimming U, Schneider O.

Nanoscale. 2016 Aug 7;8(29):14004-14. doi: 10.1039/c6nr00825a. Epub 2016 May 3.

PMID:
27140292
3.

Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film.

Yamada Y, Iriyama Y, Abe T, Ogumi Z.

Langmuir. 2009 Nov 3;25(21):12766-70. doi: 10.1021/la901829v.

PMID:
19856995
4.

In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide.

Liu XR, Wang L, Wan LJ, Wang D.

ACS Appl Mater Interfaces. 2015 May 13;7(18):9573-80. doi: 10.1021/acsami.5b01024. Epub 2015 Apr 30.

PMID:
25899800
5.

Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.

Leung K, Budzien JL.

Phys Chem Chem Phys. 2010 Jul 7;12(25):6583-6. doi: 10.1039/b925853a. Epub 2010 May 25.

PMID:
20502786
6.

Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.

Yu X, Manthiram A.

Acc Chem Res. 2017 Nov 21;50(11):2653-2660. doi: 10.1021/acs.accounts.7b00460. Epub 2017 Nov 7.

PMID:
29112389
7.

Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.

Liu YM, G Nicolau B, Esbenshade JL, Gewirth AA.

Anal Chem. 2016 Jul 19;88(14):7171-7. doi: 10.1021/acs.analchem.6b01292. Epub 2016 Jul 11.

PMID:
27346184
8.

Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study.

Boyer MJ, Vilčiauskas L, Hwang GS.

Phys Chem Chem Phys. 2016 Oct 12;18(40):27868-27876.

PMID:
27711674
9.

Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes.

Yim T, Han YK.

ACS Appl Mater Interfaces. 2017 Sep 27;9(38):32851-32858. doi: 10.1021/acsami.7b11309. Epub 2017 Sep 18.

PMID:
28880070
10.

Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.

Liu XR, Deng X, Liu RR, Yan HJ, Guo YG, Wang D, Wan LJ.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20317-23. doi: 10.1021/am505847s. Epub 2014 Nov 17.

PMID:
25380518
11.

Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries.

Zheng J, Yan P, Cao R, Xiang H, Engelhard MH, Polzin BJ, Wang C, Zhang JG, Xu W.

ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5715-22. doi: 10.1021/acsami.5b12517. Epub 2016 Feb 19.

PMID:
26862677
12.

Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.

Unocic RR, Sun XG, Sacci RL, Adamczyk LA, Alsem DH, Dai S, Dudney NJ, More KL.

Microsc Microanal. 2014 Aug;20(4):1029-37. doi: 10.1017/S1431927614012744. Epub 2014 Jul 4.

PMID:
24994021
13.

Role of edge orientation in kinetics of electrochemical intercalation of lithium-ion at graphite.

Yamada Y, Miyazaki K, Abe T.

Langmuir. 2010 Sep 21;26(18):14990-4. doi: 10.1021/la1019857.

PMID:
20715871
14.

Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes.

Lu D, Tao J, Yan P, Henderson WA, Li Q, Shao Y, Helm ML, Borodin O, Graff GL, Polzin B, Wang CM, Engelhard M, Zhang JG, De Yoreo JJ, Liu J, Xiao J.

Nano Lett. 2017 Mar 8;17(3):1602-1609. doi: 10.1021/acs.nanolett.6b04766. Epub 2017 Feb 15.

PMID:
28165750
15.

New insight into the solid electrolyte interphase with use of a focused ion beam.

Zhang HL, Li F, Liu C, Tan J, Cheng HM.

J Phys Chem B. 2005 Dec 1;109(47):22205-11.

PMID:
16853890
16.

Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures.

Inaba M, Tomiyasu H, Tasaka A, Jeong SK, Ogumi Z.

Langmuir. 2004 Feb 17;20(4):1348-55.

PMID:
15803718
17.

In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.

Horowitz Y, Han HL, Ross PN, Somorjai GA.

J Am Chem Soc. 2016 Jan 27;138(3):726-9. doi: 10.1021/jacs.5b10333. Epub 2016 Jan 12.

18.

Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy.

Bülter H, Peters F, Schwenzel J, Wittstock G.

Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10531-5. doi: 10.1002/anie.201403935. Epub 2014 Jul 30.

PMID:
25079515
19.

In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte.

Wen R, Hong M, Byon HR.

J Am Chem Soc. 2013 Jul 24;135(29):10870-6. doi: 10.1021/ja405188g. Epub 2013 Jul 12.

PMID:
23808397
20.

The Li-ion rechargeable battery: a perspective.

Goodenough JB, Park KS.

J Am Chem Soc. 2013 Jan 30;135(4):1167-76. doi: 10.1021/ja3091438. Epub 2013 Jan 18.

PMID:
23294028

Supplemental Content

Support Center