Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry.

Sinkala E, McCutcheon JE, Schuck MJ, Schmidt E, Roitman MF, Eddington DT.

Lab Chip. 2012 Jul 7;12(13):2403-8. doi: 10.1039/c2lc40168a. Epub 2012 Apr 20.

2.

Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake, behaving rats.

Fortin SM, Cone JJ, Ng-Evans S, McCutcheon JE, Roitman MF.

Curr Protoc Neurosci. 2015 Jan 5;70:7.25.1-20. doi: 10.1002/0471142301.ns0725s70.

3.

Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.

Bledsoe JM, Kimble CJ, Covey DP, Blaha CD, Agnesi F, Mohseni P, Whitlock S, Johnson DM, Horne A, Bennet KE, Lee KH, Garris PA.

J Neurosurg. 2009 Oct;111(4):712-23. doi: 10.3171/2009.3.JNS081348.

4.

Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.

Li YT, Wickens JR, Huang YL, Pan WH, Chen FY, Chen JJ.

J Neural Eng. 2013 Aug;10(4):046007. doi: 10.1088/1741-2560/10/4/046007. Epub 2013 Jun 14.

PMID:
23770892
5.

Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH.

J Neurosurg. 2009 Oct;111(4):701-11. doi: 10.3171/2009.3.JNS0990.

6.

In situ electrode calibration strategy for voltammetric measurements in vivo.

Roberts JG, Toups JV, Eyualem E, McCarty GS, Sombers LA.

Anal Chem. 2013 Dec 3;85(23):11568-75. doi: 10.1021/ac402884n. Epub 2013 Nov 13.

7.

Paired pulse voltammetry for differentiating complex analytes.

Jang DP, Kim I, Chang SY, Min HK, Arora K, Marsh MP, Hwang SC, Kimble CJ, Bennet KE, Lee KH.

Analyst. 2012 Mar 21;137(6):1428-35. doi: 10.1039/c2an15912k. Epub 2012 Feb 2.

8.

A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.

Ramsson ES.

Biotechniques. 2016 Nov 1;61(5):269-271. eCollection 2016.

9.
10.

Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry--a proof-of-principle study.

Griessenauer CJ, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Garris PA, Lee KH.

J Neurosurg. 2010 Sep;113(3):656-65. doi: 10.3171/2010.3.JNS091627.

11.

Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data.

Johnson JA, Rodeberg NT, Wightman RM.

ACS Chem Neurosci. 2016 Mar 16;7(3):349-59. doi: 10.1021/acschemneuro.5b00302. Epub 2016 Jan 27.

12.

Hitchhiker's Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry.

Rodeberg NT, Sandberg SG, Johnson JA, Phillips PE, Wightman RM.

ACS Chem Neurosci. 2017 Feb 15;8(2):221-234. doi: 10.1021/acschemneuro.6b00393. Epub 2017 Feb 9.

PMID:
28127962
13.

3D printed microfluidic devices with integrated versatile and reusable electrodes.

Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL, McNamara S, Martin RS, Spence DM.

Lab Chip. 2014 Jun 21;14(12):2023-32. doi: 10.1039/c4lc00171k. Epub 2014 Apr 25.

14.

FPGA implementation of principal component regression (PCR) for real-time differentiation of dopamine from interferents.

Bozorgzadeh B, Covey DP, Garris PA, Mohseni P.

Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5151-4. doi: 10.1109/EMBC.2015.7319551.

PMID:
26737451
15.

Fast Scan Cyclic Voltammetry of Dopamine and Serotonin in Mouse Brain Slices.

John CE, Jones SR.

In: Michael AC, Borland LM, editors. Electrochemical Methods for Neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 4.

16.

Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle.

Shon YM, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Blaha CD, Lee KH.

J Neurosurg. 2010 Mar;112(3):539-48. doi: 10.3171/2009.7.JNS09787.

17.

Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode.

Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG, Unwin PR, Macpherson JV.

Anal Chem. 2013 Jan 2;85(1):163-9. doi: 10.1021/ac3023586. Epub 2012 Dec 11.

PMID:
23190004
18.

Real-time dopamine measurement in awake monkeys.

Schluter EW, Mitz AR, Cheer JF, Averbeck BB.

PLoS One. 2014 Jun 12;9(6):e98692. doi: 10.1371/journal.pone.0098692. eCollection 2014.

19.

Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry.

Koehne JE, Marsh M, Boakye A, Douglas B, Kim IY, Chang SY, Jang DP, Bennet KE, Kimble C, Andrews R, Meyyappan M, Lee KH.

Analyst. 2011 May 7;136(9):1802-5. doi: 10.1039/c1an15025a. Epub 2011 Mar 8.

20.

Simultaneous electrochemical measurements of oxygen and dopamine in vivo.

Zimmerman JB, Wightman RM.

Anal Chem. 1991 Jan 1;63(1):24-8.

PMID:
1810167

Supplemental Content

Support Center