Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

  • Showing results for a modified search because your search retrieved no results.
1.

CD28 ligation increases macrophage suppression of T-cell proliferation.

Silberman D, Bucknum A, Bartlett T, Composto G, Kozlowski M, Walker A, Werda A, Cua J, Sharpe AH, Somerville JE, Riggs JE.

Cell Mol Immunol. 2012 Jul;9(4):341-9. doi: 10.1038/cmi.2012.13. Epub 2012 Apr 23.

2.

Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-gamma-induced nitric oxide production.

Yamazaki T, Akiba H, Koyanagi A, Azuma M, Yagita H, Okumura K.

J Immunol. 2005 Aug 1;175(3):1586-92.

3.

Macrophage regulation of B cell proliferation.

Goldman N, Valiuskyte K, Londregan J, Swider A, Somerville J, Riggs JE.

Cell Immunol. 2017 Apr;314:54-62. doi: 10.1016/j.cellimm.2017.02.002. Epub 2017 Feb 21.

PMID:
28238361
5.
7.

Estrogen up-regulates inducible nitric oxide synthase, nitric oxide, and cyclooxygenase-2 in splenocytes activated with T cell stimulants: role of interferon-gamma.

Karpuzoglu E, Fenaux JB, Phillips RA, Lengi AJ, Elvinger F, Ansar Ahmed S.

Endocrinology. 2006 Feb;147(2):662-71. Epub 2005 Nov 17.

PMID:
16293660
8.

Cellular mechanisms that cause suppressed gamma interferon secretion in endotoxin-tolerant mice.

Varma TK, Toliver-Kinsky TE, Lin CY, Koutrouvelis AP, Nichols JE, Sherwood ER.

Infect Immun. 2001 Sep;69(9):5249-63.

9.

Polarization effects of 4-1BB during CD28 costimulation in generating tumor-reactive T cells for cancer immunotherapy.

Li Q, Carr A, Ito F, Teitz-Tennenbaum S, Chang AE.

Cancer Res. 2003 May 15;63(10):2546-52.

10.

γδ T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a Listeria model of infection independently of CD28 costimulation.

Laird RM, Wolf BJ, Princiotta MF, Hayes SM.

PLoS One. 2013 May 9;8(5):e63178. doi: 10.1371/journal.pone.0063178. Print 2013.

11.

Complementary suppression of T cell activation by peritoneal macrophages and CTLA-4-Ig.

Yeh K, Silberman D, Gonzalez D, Riggs J.

Immunobiology. 2007;212(1):1-10. Epub 2006 Sep 18.

PMID:
17270704
12.

B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4.

Mandelbrot DA, Oosterwegel MA, Shimizu K, Yamada A, Freeman GJ, Mitchell RN, Sayegh MH, Sharpe AH.

J Clin Invest. 2001 Apr;107(7):881-7.

13.
14.
15.
16.

Functional hierarchy and relative contribution of the CD28/B7 and ICOS/B7-H2 costimulatory pathways to T cell-mediated delayed-type hypersensitivity.

Wong SC, Tan AH, Lam KP.

Cell Immunol. 2009;256(1-2):64-71. doi: 10.1016/j.cellimm.2009.01.009. Epub 2009 Feb 27.

PMID:
19249753
17.

Peritoneal macrophages suppress T-cell activation by amino acid catabolism.

Matlack R, Yeh K, Rosini L, Gonzalez D, Taylor J, Silberman D, Pennello A, Riggs J.

Immunology. 2006 Mar;117(3):386-95.

18.

Erythropoietin increases macrophage-mediated T cell suppression.

Wood MA, Goldman N, DePierri K, Somerville J, Riggs JE.

Cell Immunol. 2016 Aug-Sep;306-307:17-24. doi: 10.1016/j.cellimm.2016.05.004. Epub 2016 May 27.

19.

Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice.

Angulo I, de las Heras FG, García-Bustos JF, Gargallo D, Muñoz-Fernández MA, Fresno M.

Blood. 2000 Jan 1;95(1):212-20.

Supplemental Content

Support Center