Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations.

Dunbar KL, Melby JO, Mitchell DA.

Nat Chem Biol. 2012 Apr 22;8(6):569-75. doi: 10.1038/nchembio.944.

2.

Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products.

Dunbar KL, Tietz JI, Cox CL, Burkhart BJ, Mitchell DA.

J Am Chem Soc. 2015 Jun 24;137(24):7672-7. doi: 10.1021/jacs.5b04682. Epub 2015 Jun 12.

3.

Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis.

Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA.

Nat Chem Biol. 2014 Oct;10(10):823-9. doi: 10.1038/nchembio.1608. Epub 2014 Aug 17.

4.

ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17.

Milne JC, Eliot AC, Kelleher NL, Walsh CT.

Biochemistry. 1998 Sep 22;37(38):13250-61.

PMID:
9748332
5.

Insights into the mechanism of peptide cyclodehydrations achieved through the chemoenzymatic generation of amide derivatives.

Dunbar KL, Mitchell DA.

J Am Chem Soc. 2013 Jun 12;135(23):8692-701. doi: 10.1021/ja4029507. Epub 2013 May 30.

6.

The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.

Cox CL, Doroghazi JR, Mitchell DA.

BMC Genomics. 2015 Oct 13;16:778. doi: 10.1186/s12864-015-2008-0.

7.

From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase.

Li YM, Milne JC, Madison LL, Kolter R, Walsh CT.

Science. 1996 Nov 15;274(5290):1188-93.

PMID:
8895467
8.

Discovery of a widely distributed toxin biosynthetic gene cluster.

Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, Wohlrab A, Dorrestein PC, Nizet V, Dixon JE.

Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5879-84. doi: 10.1073/pnas.0801338105. Epub 2008 Mar 28.

9.

Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family.

Haft DH, Basu MK, Mitchell DA.

BMC Biol. 2010 May 25;8:70. doi: 10.1186/1741-7007-8-70.

10.

Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates.

Melby JO, Nard NJ, Mitchell DA.

Curr Opin Chem Biol. 2011 Jun;15(3):369-78. doi: 10.1016/j.cbpa.2011.02.027. Epub 2011 Mar 21. Review.

11.

Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics.

Molohon KJ, Melby JO, Lee J, Evans BS, Dunbar KL, Bumpus SB, Kelleher NL, Mitchell DA.

ACS Chem Biol. 2011 Dec 16;6(12):1307-13. doi: 10.1021/cb200339d. Epub 2011 Oct 6.

12.

Biosynthesis: Ringing in a new view.

Kelly WL.

Nat Chem Biol. 2012 May 17;8(6):505-7. doi: 10.1038/nchembio.973. No abstract available.

PMID:
22596200
13.

Kinetics and regioselectivity of peptide-to-heterocycle conversions by microcin B17 synthetase.

Belshaw PJ, Roy RS, Kelleher NL, Walsh CT.

Chem Biol. 1998 Jul;5(7):373-84.

PMID:
9662507
14.

Orchestration of enzymatic processing by thiazole/oxazole-modified microcin dehydrogenases.

Melby JO, Li X, Mitchell DA.

Biochemistry. 2014 Jan 21;53(2):413-22. doi: 10.1021/bi401529y. Epub 2014 Jan 7.

15.

[Structure, function, and biosynthesis of thiazoleoxazole modified microcins].

Meterev MV, Giliarov DA.

Mol Biol (Mosk). 2014 Jan-Feb;48(1):36-54. Review. Russian.

16.
17.
19.

Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system.

Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA.

Chem Biol. 2000 Oct;7(10):753-64.

20.

Structure and genetics of circular bacteriocins.

van Belkum MJ, Martin-Visscher LA, Vederas JC.

Trends Microbiol. 2011 Aug;19(8):411-8. doi: 10.1016/j.tim.2011.04.004. Epub 2011 Jun 12. Review.

PMID:
21664137

Supplemental Content

Support Center