Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 191

1.

Chemical and electrochemical insertion of Li into the spinel structure of CuCr2Se4: ex situ and in situ observations by X-ray diffraction and scanning electron microscopy.

Bensch W, Ophey J, Hain H, Gesswein H, Chen D, Mönig R, Gruber PA, Indris S.

Phys Chem Chem Phys. 2012 May 28;14(20):7509-16. doi: 10.1039/c2cp00064d. Epub 2012 Apr 18.

PMID:
22513451
2.
3.

X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.

Deb A, Bergmann U, Cairns EJ, Cramer SP.

J Synchrotron Radiat. 2004 Nov 1;11(Pt 6):497-504. Epub 2004 Oct 22.

PMID:
15496738
5.

Microwave solid-state synthesis of LiV(3)O(8) as cathode material for lithium batteries.

Yang G, Wang G, Hou W.

J Phys Chem B. 2005 Jun 9;109(22):11186-96.

PMID:
16852365
6.

Antifluorite-type lithium chromium oxide nitrides: synthesis, structure, order, and electrochemical properties.

Cabana J, Ling CD, Oró-Solé J, Gautier D, Tobías G, Adams S, Canadell E, Palacín MR.

Inorg Chem. 2004 Nov 1;43(22):7050-60.

PMID:
15500342
7.

An electrochemical study of lithium insertion into Cr(5-y)Ti(y)Se(8) (y = 1, 2, 3, 4, 4.5) beyond the intercalation limit.

Indris S, Wontcheu J, Bensch W.

Phys Chem Chem Phys. 2009 May 7;11(17):3250-6. doi: 10.1039/b822397a. Epub 2009 Mar 12.

PMID:
19370221
8.

Full structural and electrochemical characterization of Li2Ti6O13 as anode for Li-ion batteries.

Pérez-Flores JC, Baehtz C, Hoelzel M, Kuhn A, García-Alvarado F.

Phys Chem Chem Phys. 2012 Feb 28;14(8):2892-9. doi: 10.1039/c2cp23741e. Epub 2012 Jan 19.

PMID:
22258437
9.
10.

Tuning the magnetic properties of Li(x)CrTi0.25Se2 (0.03 < or = x < or = 0.7) by directed deintercalation of lithium.

Behrens M, Wontcheu J, Kiebach R, Bensch W.

Chemistry. 2008;14(16):5021-9. doi: 10.1002/chem.200701471.

PMID:
18418834
11.

New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.

Kim JK, Senthilkumar B, Sahgong SH, Kim JH, Chi M, Kim Y.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):7025-32. doi: 10.1021/acsami.5b01260. Epub 2015 Mar 23.

PMID:
25768692
12.

Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes.

Hirayama M, Kim K, Toujigamori T, Cho W, Kanno R.

Dalton Trans. 2011 Mar 28;40(12):2882-7. doi: 10.1039/c0dt01477j. Epub 2011 Feb 9.

PMID:
21308112
13.

Chemical Transport Synthesis, Electrochemical Behavior, and Electronic Structure of Superconducting Zirconium and Hafnium Nitride Halides.

Vlassov M, Palacín MR, Beltrán-Porter D, Oró-Solé J, Canadell E, Alemany P, Fuertes A.

Inorg Chem. 1999 Oct 4;38(20):4530-4538.

PMID:
11671167
14.

Preparation and improved electrochemical performance of Li[Li(1/3-x/3)Cr(x)Mn(2/3-2x/3)]O2 nanoparticles quenched in iced water.

Chen L, Wang L, Gao P, Qian B, Li Y, Ji H, Jiang X, Yang G.

J Nanosci Nanotechnol. 2013 Oct;13(10):6617-26.

PMID:
24245122
15.

Electrospun Zn(1-x)Mn(x)Fe2O4 nanofibers as anodes for lithium-ion batteries and the impact of mixed transition metallic oxides on battery performance.

Teh PF, Pramana SS, Sharma Y, Ko YW, Madhavi S.

ACS Appl Mater Interfaces. 2013 Jun 26;5(12):5461-7. doi: 10.1021/am400497v. Epub 2013 Jun 5.

PMID:
23688028
16.

Study of local structure and Li dynamics in Li(4+x)Ti(5)O(12) (0 ≤ x ≤ 5) using (6)Li and (7)Li NMR spectroscopy.

Hain H, Scheuermann M, Heinzmann R, Wünsche L, Hahn H, Indris S.

Solid State Nucl Magn Reson. 2012 Apr;42:9-16. doi: 10.1016/j.ssnmr.2011.11.007. Epub 2011 Nov 30.

PMID:
22154742
17.

Chemical vs. electrochemical extraction of lithium from the Li-excess Li(1.10)Mn(1.90)O4 spinel followed by NMR and DRX techniques.

Martinez S, Sobrados I, Tonti D, Amarilla JM, Sanz J.

Phys Chem Chem Phys. 2014 Feb 21;16(7):3282-91. doi: 10.1039/c3cp54386b.

PMID:
24413557
18.

Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.

Wang F, Robert R, Chernova NA, Pereira N, Omenya F, Badway F, Hua X, Ruotolo M, Zhang R, Wu L, Volkov V, Su D, Key B, Whittingham MS, Grey CP, Amatucci GG, Zhu Y, Graetz J.

J Am Chem Soc. 2011 Nov 23;133(46):18828-36. doi: 10.1021/ja206268a. Epub 2011 Sep 22.

PMID:
21894971
19.

Ag4V2O6F2 (SVOF): a high silver density phase and potential new cathode material for implantable cardioverter defibrillators.

Sauvage F, Bodenez V, Vezin H, Albrecht TA, Tarascon JM, Poeppelmeier KR.

Inorg Chem. 2008 Oct 6;47(19):8464-72. doi: 10.1021/ic800793e.

PMID:
18821813
20.

A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.

Ng SH, Tran N, Bramnik KG, Hibst H, Novák P.

Chemistry. 2008;14(35):11141-8. doi: 10.1002/chem.200800286.

PMID:
18979463

Supplemental Content

Support Center