Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Forecasting changes in population genetic structure of alpine plants in response to global warming.

Jay F, Manel S, Alvarez N, Durand EY, Thuiller W, Holderegger R, Taberlet P, François O.

Mol Ecol. 2012 May;21(10):2354-68. doi: 10.1111/j.1365-294X.2012.05541.x. Epub 2012 Apr 18.

PMID:
22512785
2.

Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

Roth T, Plattner M, Amrhein V.

PLoS One. 2014 Jan 8;9(1):e82490. doi: 10.1371/journal.pone.0082490. eCollection 2014.

3.

Past and future demographic dynamics of alpine species: limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada.

Blanco-Pastor JL, Fernández-Mazuecos M, Vargas P.

Mol Ecol. 2013 Aug;22(16):4177-95. doi: 10.1111/mec.12383. Epub 2013 Jul 12.

PMID:
23844700
4.

Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre.

Telwala Y, Brook BW, Manish K, Pandit MK.

PLoS One. 2013;8(2):e57103. doi: 10.1371/journal.pone.0057103. Epub 2013 Feb 20.

5.

Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.

Kimball KD, Davis ML, Weihrauch DM, Murray GL, Rancourt K.

Am J Bot. 2014 Sep;101(9):1437-46. doi: 10.3732/ajb.1400214. Epub 2014 Sep 14.

6.

Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage?

Bannister P, Maegli T, Dickinson KJ, Halloy SR, Knight A, Lord JM, Mark AF, Spencer KL.

Oecologia. 2005 Jun;144(2):245-56. Epub 2005 May 11.

PMID:
15891822
7.

Novel competitors shape species' responses to climate change.

Alexander JM, Diez JM, Levine JM.

Nature. 2015 Sep 24;525(7570):515-8. doi: 10.1038/nature14952. Epub 2015 Sep 16.

PMID:
26374998
8.

Flowering phenology and reproductive fitness along a mountain slope: maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides.

Scheepens JF, Stöcklin J.

Oecologia. 2013 Mar;171(3):679-91. doi: 10.1007/s00442-012-2582-7. Epub 2013 Feb 6.

PMID:
23386043
9.

Disparity in elevational shifts of European trees in response to recent climate warming.

Rabasa SG, Granda E, Benavides R, Kunstler G, Espelta JM, Ogaya R, Peñuelas J, Scherer-Lorenzen M, Gil W, Grodzki W, Ambrozy S, Bergh J, Hódar JA, Zamora R, Valladares F.

Glob Chang Biol. 2013 Aug;19(8):2490-9. doi: 10.1111/gcb.12220. Epub 2013 May 14.

PMID:
23572443
10.

Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains.

Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S; Intrabiodiv Consortium., Brochmann C.

Mol Ecol. 2007 Jun;16(12):2542-59.

PMID:
17561912
11.

Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

Thakur MP, Reich PB, Fisichelli NA, Stefanski A, Cesarz S, Dobies T, Rich RL, Hobbie SE, Eisenhauer N.

Oecologia. 2014 Jun;175(2):713-23. doi: 10.1007/s00442-014-2927-5. Epub 2014 Mar 26.

PMID:
24668014
12.

Soil warming increases plant species richness but decreases germination from the alpine soil seed bank.

Hoyle GL, Venn SE, Steadman KJ, Good RB, McAuliffe EJ, Williams ER, Nicotra AB.

Glob Chang Biol. 2013 May;19(5):1549-61. doi: 10.1111/gcb.12135. Epub 2013 Feb 7.

PMID:
23505066
13.

Demographic History, Population Structure, and Local Adaptation in Alpine Populations of Cardamine impatiens and Cardamine resedifolia.

Ometto L, Li M, Bresadola L, Barbaro E, Neteler M, Varotto C.

PLoS One. 2015 May 1;10(5):e0125199. doi: 10.1371/journal.pone.0125199. eCollection 2015.

14.

Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation.

Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P; IntraBioDiv Consortium..

Mol Ecol. 2012 Aug;21(15):3729-38. doi: 10.1111/j.1365-294X.2012.05656.x. Epub 2012 Jun 10.

15.

Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps.

Cornelius C, Estrella N, Franz H, Menzel A.

Plant Biol (Stuttg). 2013 Jan;15 Suppl 1:57-69. doi: 10.1111/j.1438-8677.2012.00577.x. Epub 2012 Jun 11.

PMID:
22686251
16.

Incorporating population-level variation in thermal performance into predictions of geographic range shifts.

Angert AL, Sheth SN, Paul JR.

Integr Comp Biol. 2011 Nov;51(5):733-50. doi: 10.1093/icb/icr048. Epub 2011 Jun 25.

PMID:
21705795
17.

Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming.

Mowll W, Blumenthal DM, Cherwin K, Smith A, Symstad AJ, Vermeire LT, Collins SL, Smith MD, Knapp AK.

Oecologia. 2015 Apr;177(4):959-69. doi: 10.1007/s00442-015-3232-7. Epub 2015 Feb 12.

PMID:
25669452
19.

Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect.

Merrill RM, Gutiérrez D, Lewis OT, Gutiérrez J, Díez SB, Wilson RJ.

J Anim Ecol. 2008 Jan;77(1):145-55. doi: 10.1111/j.1365-2656.2007.01303.x.

PMID:
18177334
20.

Predicting the variation in Echinogammarus marinus at its southernmost limits under global warming scenarios: can the sex-ratio make a difference?

Guerra A, Leite N, Marques JC, Ford AT, Martins I.

Sci Total Environ. 2014 Jan 1;466-467:1022-9. doi: 10.1016/j.scitotenv.2013.07.102. Epub 2013 Aug 30.

PMID:
23995258

Supplemental Content

Support Center