Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 239


Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions.

Zuther E, Schulz E, Childs LH, Hincha DK.

Plant Cell Environ. 2012 Oct;35(10):1860-78. doi: 10.1111/j.1365-3040.2012.02522.x.


Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions.

Le MQ, Engelsberger WR, Hincha DK.

Cryobiology. 2008 Oct;57(2):104-12. doi: 10.1016/j.cryobiol.2008.06.004.


Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana.

McKhann HI, Gery C, Bérard A, Lévêque S, Zuther E, Hincha DK, De Mita S, Brunel D, Téoulé E.

BMC Plant Biol. 2008 Oct 15;8:105. doi: 10.1186/1471-2229-8-105.


Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions.

Gery C, Zuther E, Schulz E, Legoupi J, Chauveau A, McKhann H, Hincha DK, Téoulé E.

Plant Sci. 2011 Jan;180(1):12-23. doi: 10.1016/j.plantsci.2010.07.010.


Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions.

Lee YP, Babakov A, de Boer B, Zuther E, Hincha DK.

BMC Plant Biol. 2012 Aug 3;12:131. doi: 10.1186/1471-2229-12-131.


Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis.

Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM.

Plant Physiol. 2005 Nov;139(3):1304-12.


The role of raffinose in the cold acclimation response of Arabidopsis thaliana.

Zuther E, Büchel K, Hundertmark M, Stitt M, Hincha DK, Heyer AG.

FEBS Lett. 2004 Oct 8;576(1-2):169-73.


Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions.

Zuther E, Juszczak I, Lee YP, Baier M, Hincha DK.

Sci Rep. 2015 Jul 15;5:12199. doi: 10.1038/srep12199.


Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.

Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF.

Science. 1998 Apr 3;280(5360):104-6.


Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.

Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF.

Plant Physiol. 2000 Dec;124(4):1854-65.


Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana.

Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Willmitzer L.

Plant J. 2012 Dec;72(6):972-82. doi: 10.1111/tpj.12007.


Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance.

Korn M, Peterek S, Mock HP, Heyer AG, Hincha DK.

Plant Cell Environ. 2008 Jun;31(6):813-27. doi: 10.1111/j.1365-3040.2008.01800.x.


Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana.

Fursova OV, Pogorelko GV, Tarasov VA.

Gene. 2009 Jan 15;429(1-2):98-103. doi: 10.1016/j.gene.2008.10.016.


Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species.

Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF.

Plant Physiol. 2001 Nov;127(3):910-7.

Items per page

Supplemental Content

Support Center