Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Nuclear morphometry, nucleomics and prostate cancer progression.

Veltri RW, Christudass CS, Isharwal S.

Asian J Androl. 2012 May;14(3):375-84. doi: 10.1038/aja.2011.148. Epub 2012 Apr 16. Review.

2.

MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1.

Lin ZY, Huang YQ, Zhang YQ, Han ZD, He HC, Ling XH, Fu X, Dai QS, Cai C, Chen JH, Liang YX, Jiang FN, Zhong WD, Wang F, Wu CL.

Int J Cancer. 2014 Aug 1;135(3):541-50. doi: 10.1002/ijc.28707. Epub 2014 Jan 10.

3.

Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential.

Almeida M, Costa VL, Costa NR, Ramalho-Carvalho J, Baptista T, Ribeiro FR, Paulo P, Teixeira MR, Oliveira J, Lothe RA, Lind GE, Henrique R, Jerónimo C.

J Cell Mol Med. 2014 Nov;18(11):2287-97. doi: 10.1111/jcmm.12394. Epub 2014 Sep 11.

4.

Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis.

Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, Hicks JL, Morgan J, Cornish TC, Sutcliffe S, Isaacs WB, Luo J, De Marzo AM.

Mod Pathol. 2008 Sep;21(9):1156-67. doi: 10.1038/modpathol.2008.111. Epub 2008 Jun 20.

5.

The role of genetic markers in the management of prostate cancer.

Choudhury AD, Eeles R, Freedland SJ, Isaacs WB, Pomerantz MM, Schalken JA, Tammela TL, Visakorpi T.

Eur Urol. 2012 Oct;62(4):577-87. doi: 10.1016/j.eururo.2012.05.054. Epub 2012 Jun 5. Review.

PMID:
22695242
6.

Epigenetics in prostate cancer: biologic and clinical relevance.

Jerónimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, Henrique R, Nelson WG, Shariat SF.

Eur Urol. 2011 Oct;60(4):753-66. doi: 10.1016/j.eururo.2011.06.035. Epub 2011 Jun 22. Review.

PMID:
21719191
7.

Prognostic value of Her-2/neu and DNA index for progression, metastasis and prostate cancer-specific death in men with long-term follow-up after radical prostatectomy.

Isharwal S, Miller MC, Epstein JI, Mangold LA, Humphreys E, Partin AW, Veltri RW.

Int J Cancer. 2008 Dec 1;123(11):2636-43. doi: 10.1002/ijc.23838.

8.

Molecular profiling of indolent human prostate cancer: tackling technical challenges to achieve high-fidelity genome-wide data.

Dunn TA, Fedor HL, De Marzo AM, Luo J.

Asian J Androl. 2012 May;14(3):385-92. doi: 10.1038/aja.2011.147. Epub 2012 Feb 6. Review.

9.

The emerging role of histone lysine demethylases in prostate cancer.

Crea F, Sun L, Mai A, Chiang YT, Farrar WL, Danesi R, Helgason CD.

Mol Cancer. 2012 Aug 6;11:52. doi: 10.1186/1476-4598-11-52. Review.

10.

The biology and clinical implications of prostate cancer dormancy and metastasis.

Morrissey C, Vessella RL, Lange PH, Lam HM.

J Mol Med (Berl). 2016 Mar;94(3):259-65. doi: 10.1007/s00109-015-1353-4. Epub 2015 Oct 21. Review.

11.

Estrogen induces androgen-repressed SOX4 expression to promote progression of prostate cancer cells.

Yang M, Wang J, Wang L, Shen C, Su B, Qi M, Hu J, Gao W, Tan W, Han B.

Prostate. 2015 Sep;75(13):1363-75. doi: 10.1002/pros.23017. Epub 2015 May 27.

PMID:
26015225
12.

Epigenetics-related genes in prostate cancer: expression profile in prostate cancer tissues, androgen-sensitive and -insensitive cell lines.

Shaikhibrahim Z, Lindstrot A, Ochsenfahrt J, Fuchs K, Wernert N.

Int J Mol Med. 2013 Jan;31(1):21-5. doi: 10.3892/ijmm.2012.1173. Epub 2012 Nov 6.

13.

Upregulation of SATB1 is associated with prostate cancer aggressiveness and disease progression.

Shukla S, Sharma H, Abbas A, MacLennan GT, Fu P, Danielpour D, Gupta S.

PLoS One. 2013;8(1):e53527. doi: 10.1371/journal.pone.0053527. Epub 2013 Jan 7.

14.

Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer.

Li J, Ren S, Piao HL, Wang F, Yin P, Xu C, Lu X, Ye G, Shao Y, Yan M, Zhao X, Sun Y, Xu G.

Sci Rep. 2016 Feb 11;6:20984. doi: 10.1038/srep20984.

15.

Ability to predict metastasis based on pathology findings and alterations in nuclear structure of normal-appearing and cancer peripheral zone epithelium in the prostate.

Veltri RW, Khan MA, Miller MC, Epstein JI, Mangold LA, Walsh PC, Partin AW.

Clin Cancer Res. 2004 May 15;10(10):3465-73.

16.

PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome.

Li Y, Su J, DingZhang X, Zhang J, Yoshimoto M, Liu S, Bijian K, Gupta A, Squire JA, Alaoui Jamali MA, Bismar TA.

J Pathol. 2011 May;224(1):90-100. doi: 10.1002/path.2855. Epub 2011 Mar 7.

PMID:
21381033
17.

Nuclear iASPP may facilitate prostate cancer progression.

Morris EV, Cerundolo L, Lu M, Verrill C, Fritzsche F, White MJ, Thalmann GN, ten Donkelaar CS, Ratnayaka I, Salter V, Hamdy FC, Lu X, Bryant RJ.

Cell Death Dis. 2014 Oct 23;5:e1492. doi: 10.1038/cddis.2014.442.

18.

Expression of spermidine/spermine N(1) -acetyl transferase (SSAT) in human prostate tissues is related to prostate cancer progression and metastasis.

Huang W, Eickhoff JC, Mehraein-Ghomi F, Church DR, Wilding G, Basu HS.

Prostate. 2015 Aug 1;75(11):1150-9. doi: 10.1002/pros.22996. Epub 2015 Apr 20.

19.

The epigenetics of prostate cancer diagnosis and prognosis: update on clinical applications.

Blute ML Jr, Damaschke NA, Jarrard DF.

Curr Opin Urol. 2015 Jan;25(1):83-8. doi: 10.1097/MOU.0000000000000132. Review.

20.

Low-Molecular-Weight Protein Tyrosine Phosphatase Predicts Prostate Cancer Outcome by Increasing the Metastatic Potential.

Ruela-de-Sousa RR, Hoekstra E, Hoogland AM, Queiroz KC, Peppelenbosch MP, Stubbs AP, Pelizzaro-Rocha K, van Leenders GJ, Jenster G, Aoyama H, Ferreira CV, Fuhler GM.

Eur Urol. 2016 Apr;69(4):710-9. doi: 10.1016/j.eururo.2015.06.040. Epub 2015 Jul 7.

PMID:
26159288

Supplemental Content

Support Center