Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83


Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.

Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink JI, Nel AE.

ACS Nano. 2012 May 22;6(5):4349-68. doi: 10.1021/nn3010087. Epub 2012 Apr 24.


PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co₃O₄ p-type semiconductor in cells and the lung.

Zhang H, Pokhrel S, Ji Z, Meng H, Wang X, Lin S, Chang CH, Li L, Li R, Sun B, Wang M, Liao YP, Liu R, Xia T, Mädler L, Nel AE.

J Am Chem Soc. 2014 Apr 30;136(17):6406-20. doi: 10.1021/ja501699e. Epub 2014 Apr 15.


Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies.

Kaweeteerawat C, Ivask A, Liu R, Zhang H, Chang CH, Low-Kam C, Fischer H, Ji Z, Pokhrel S, Cohen Y, Telesca D, Zink J, Mädler L, Holden PA, Nel A, Godwin H.

Environ Sci Technol. 2015 Jan 20;49(2):1105-12.


A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles.

Burello E, Worth AP.

Nanotoxicology. 2011 Jun;5(2):228-35. doi: 10.3109/17435390.2010.502980. Epub 2010 Jul 15.


Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.

Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE.

ACS Nano. 2008 Oct 28;2(10):2121-34. doi: 10.1021/nn800511k. Erratum in: ACS Nano. 2008 Dec 23;2(12):2592.


Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells.

Fahmy B, Cormier SA.

Toxicol In Vitro. 2009 Oct;23(7):1365-71. doi: 10.1016/j.tiv.2009.08.005. Epub 2009 Aug 20.


Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines.

Karlsson HL, Gliga AR, Calléja FM, Gonçalves CS, Wallinder IO, Vrieling H, Fadeel B, Hendriks G.

Part Fibre Toxicol. 2014 Sep 2;11:41. doi: 10.1186/s12989-014-0041-9.


Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area.

Horie M, Fujita K, Kato H, Endoh S, Nishio K, Komaba LK, Nakamura A, Miyauchi A, Kinugasa S, Hagihara Y, Niki E, Yoshida Y, Iwahashi H.

Metallomics. 2012 Apr;4(4):350-60. doi: 10.1039/c2mt20016c. Epub 2012 Mar 15.


Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation.

Cai X, Lee A, Ji Z, Huang C, Chang CH, Wang X, Liao YP, Xia T, Li R.

Part Fibre Toxicol. 2017 Apr 21;14(1):13. doi: 10.1186/s12989-017-0193-5.


Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.

Li Y, Zhang W, Niu J, Chen Y.

ACS Nano. 2012 Jun 26;6(6):5164-73. doi: 10.1021/nn300934k. Epub 2012 May 18.


Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2.

Horie M, Fukui H, Endoh S, Maru J, Miyauchi A, Shichiri M, Fujita K, Niki E, Hagihara Y, Yoshida Y, Morimoto Y, Iwahashi H.

Inhal Toxicol. 2012 Jun;24(7):391-400. doi: 10.3109/08958378.2012.682321.


Comparative pulmonary toxicity of inhaled nickel nanoparticles; role of deposited dose and solubility.

Kang GS, Gillespie PA, Gunnison A, Rengifo H, Koberstein J, Chen LC.

Inhal Toxicol. 2011 Feb;23(2):95-103. doi: 10.3109/08958378.2010.543440. Epub 2011 Jan 24.


Modulation of oxidative stress by functionalized fullerene materials in the lung tissues of female C57/BL mice with a metastatic Lewis lung carcinoma.

Jiao F, Qu Y, Zhou G, Liu Y, Li W, Ge C, Li Y, Hu W, Li B, Gao Y, Chen C.

J Nanosci Nanotechnol. 2010 Dec;10(12):8632-7.


Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties.

Chusuei CC, Wu CH, Mallavarapu S, Hou FY, Hsu CM, Winiarz JG, Aronstam RS, Huang YW.

Chem Biol Interact. 2013 Nov 25;206(2):319-26. doi: 10.1016/j.cbi.2013.09.020. Epub 2013 Oct 10.


Recovery of redox homeostasis altered by CuNPs in H4IIE liver cells does not reduce the cytotoxic effects of these NPs: an investigation using aryl hydrocarbon receptor (AhR) dependent antioxidant activity.

Connolly M, Fernández-Cruz ML, Navas JM.

Chem Biol Interact. 2015 Feb 25;228:57-68. doi: 10.1016/j.cbi.2015.01.012. Epub 2015 Jan 21.


Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells.

Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L'Azou B.

Part Fibre Toxicol. 2011 Mar 3;8:10. doi: 10.1186/1743-8977-8-10.


Pharyngeal aspiration of metal oxide nanoparticles showed potential of allergy aggravation effect to inhaled ovalbumin.

Horie M, Stowe M, Tabei M, Kuroda E.

Inhal Toxicol. 2015 Feb;27(3):181-90. doi: 10.3109/08958378.2015.1026618. Epub 2015 Apr 13.


Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production.

Berg JM, Ho S, Hwang W, Zebda R, Cummins K, Soriaga MP, Taylor R, Guo B, Sayes CM.

Chem Res Toxicol. 2010 Dec 20;23(12):1874-82. doi: 10.1021/tx100307h.


Soot nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs.

Rouse RL, Murphy G, Boudreaux MJ, Paulsen DB, Penn AL.

Am J Respir Cell Mol Biol. 2008 Aug;39(2):198-207. doi: 10.1165/rcmb.2008-0057OC. Epub 2008 Mar 26.


Supplemental Content

Support Center