Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity.

Grover N, Borkar IV, Dinu CZ, Kane RS, Dordick JS.

Enzyme Microb Technol. 2012 May 10;50(6-7):271-9. doi: 10.1016/j.enzmictec.2012.01.006. Epub 2012 Feb 24.

PMID:
22500892
2.

Perhydrolase-nanotube paint composites with sporicidal and antiviral activity.

Grover N, Douaisi MP, Borkar IV, Lee L, Dinu CZ, Kane RS, Dordick JS.

Appl Microbiol Biotechnol. 2013 Oct;97(19):8813-21. doi: 10.1007/s00253-012-4573-3. Epub 2012 Nov 28.

PMID:
23188457
4.

Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil.

Kumar A, Vemula PK, Ajayan PM, John G.

Nat Mater. 2008 Mar;7(3):236-41. doi: 10.1038/nmat2099. Epub 2008 Jan 20.

PMID:
18204453
5.

Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates.

Pangule RC, Brooks SJ, Dinu CZ, Bale SS, Salmon SL, Zhu G, Metzger DW, Kane RS, Dordick JS.

ACS Nano. 2010 Jul 27;4(7):3993-4000. doi: 10.1021/nn100932t.

6.
7.

Antibacterial activity of carvacrol and 2-nitro-1-propanol against single and mixed populations of foodborne pathogenic bacteria in corn flour dough.

Morente EO, Abriouel H, López RL, Ben Omar N, Gálvez A.

Food Microbiol. 2010 Apr;27(2):274-9. doi: 10.1016/j.fm.2009.11.006. Epub 2009 Nov 6.

PMID:
20141946
8.
9.

Investigations on the sporicidal and fungicidal activity of disinfectants.

Lensing HH, Oei HL.

Zentralbl Bakteriol Mikrobiol Hyg B. 1985 Dec;181(6):487-95.

PMID:
3938146
10.

Inactivation of Bacillus anthracis spores by single-walled carbon nanotubes coupled with oxidizing antimicrobial chemicals.

Lilly M, Dong X, McCoy E, Yang L.

Environ Sci Technol. 2012 Dec 18;46(24):13417-24. doi: 10.1021/es303955k. Epub 2012 Nov 30.

PMID:
23167544
11.

Antimicrobial activities of hydrogen peroxide and its activation by a novel heterogeneous Fenton's-like modified PAN catalyst.

Boateng MK, Price SL, Huddersman KD, Walsh SE.

J Appl Microbiol. 2011 Dec;111(6):1533-43. doi: 10.1111/j.1365-2672.2011.05158.x. Epub 2011 Oct 6.

12.
13.

A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species.

Hamouda T, Hayes MM, Cao Z, Tonda R, Johnson K, Wright DC, Brisker J, Baker JR Jr.

J Infect Dis. 1999 Dec;180(6):1939-49.

PMID:
10558951
14.

Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile.

Oie S, Obayashi A, Yamasaki H, Furukawa H, Kenri T, Takahashi M, Kawamoto K, Makino S.

Biol Pharm Bull. 2011;34(8):1325-9.

15.

Bactericidal activity of chlorine-loaded carbide-derived carbon against Escherichia coli and Bacillus anthracis.

Gogotsi Y, Dash RK, Yushin G, Carroll BE, Altork SR, Sassi-Gaha S, Rest RF.

J Biomed Mater Res A. 2008 Mar 1;84(3):607-13.

PMID:
17635016
16.

Susceptibilities of Bacillus subtilis, Bacillus cereus, and avirulent Bacillus anthracis spores to liquid biocides.

Hilgren J, Swanson KM, Diez-Gonzalez F, Cords B.

J Food Prot. 2009 Feb;72(2):360-4.

PMID:
19350981
17.

Contact-active antimicrobial and potentially self-polishing coatings based on cellulose.

Bieser AM, Thomann Y, Tiller JC.

Macromol Biosci. 2011 Jan 10;11(1):111-21. doi: 10.1002/mabi.201000306. Epub 2010 Oct 13.

PMID:
20945436
18.

Decontamination of fluid milk containing Bacillus spores using commercial household products.

Black DG, Taylor TM, Kerr HJ, Padhi S, Montville TJ, Davidson PM.

J Food Prot. 2008 Mar;71(3):473-8.

PMID:
18389688
19.

Evaluation of the antimicrobial activity of cationic polyethylenimines on dry surfaces.

Koplin SA, Lin S, Domanski T.

Biotechnol Prog. 2008 Sep-Oct;24(5):1160-5. doi: 10.1002/btpr.32.

PMID:
19194927
20.

Soya bean tempe extracts show antibacterial activity against Bacillus cereus cells and spores.

Roubos-van den Hil PJ, Dalmas E, Nout MJ, Abee T.

J Appl Microbiol. 2010 Jul;109(1):137-45. doi: 10.1111/j.1365-2672.2009.04637.x. Epub 2009 Nov 28.

Supplemental Content

Support Center