Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Highly sensitive determination of enantiomeric composition of chiral acids based on aggregation-induced emission.

Liu NN, Song S, Li DM, Zheng YS.

Chem Commun (Camb). 2012 May 18;48(40):4908-10. doi: 10.1039/c2cc30448a. Epub 2012 Apr 11.

PMID:
22497006
2.

Highly enantioselective recognition of a wide range of carboxylic acids based on enantioselectively aggregation-induced emission.

Li DM, Zheng YS.

Chem Commun (Camb). 2011 Sep 28;47(36):10139-41. doi: 10.1039/c1cc13622d. Epub 2011 Aug 10.

PMID:
21833382
3.

Enantioselective fluorescent sensors: a tale of BINOL.

Pu L.

Acc Chem Res. 2012 Feb 21;45(2):150-63. doi: 10.1021/ar200048d. Epub 2011 Aug 11.

PMID:
21834528
4.

A highly selective fluorescence turn-on detection of cyanide based on the aggregation of tetraphenylethylene molecules induced by chemical reaction.

Huang X, Gu X, Zhang G, Zhang D.

Chem Commun (Camb). 2012 Dec 28;48(100):12195-7. doi: 10.1039/c2cc37094h.

PMID:
23142778
5.

Fluorescence Turn-on Enantioselective Recognition of both Chiral Acidic Compounds and α-Amino Acids by a Chiral Tetraphenylethylene Macrocycle Amine.

Feng HT, Zhang X, Zheng YS.

J Org Chem. 2015 Aug 21;80(16):8096-101. doi: 10.1021/acs.joc.5b01194. Epub 2015 Jul 31.

PMID:
26197038
6.
7.

Aqueous fluorescence turn-on sensor for Zn2+ with a tetraphenylethylene compound.

Sun F, Zhang G, Zhang D, Xue L, Jiang H.

Org Lett. 2011 Dec 16;13(24):6378-81. doi: 10.1021/ol2026735. Epub 2011 Nov 22.

PMID:
22106964
8.

A pair of chiral fluorescent sensors for enantioselective recognition of mandelate in water.

Xu KX, Kong HJ, Zu FL, Yang L, Wang CJ.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jan 24;118:811-5. doi: 10.1016/j.saa.2013.09.083. Epub 2013 Oct 8.

PMID:
24157333
9.

Tetraphenylethylene-based glycoconjugate as a fluorescence "turn-on" sensor for cholera toxin.

Hu XM, Chen Q, Wang JX, Cheng QY, Yan CG, Cao J, He YJ, Han BH.

Chem Asian J. 2011 Sep 5;6(9):2376-81. doi: 10.1002/asia.201100141. Epub 2011 Jul 11.

PMID:
21748854
10.

Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.

Pu L.

Acc Chem Res. 2017 Apr 18;50(4):1032-1040. doi: 10.1021/acs.accounts.7b00036. Epub 2017 Mar 13.

PMID:
28287702
13.

Label-free fluorescence detection of mercury(II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative.

Xu JP, Song ZG, Fang Y, Mei J, Jia L, Qin AJ, Sun JZ, Ji J, Tang BZ.

Analyst. 2010 Nov;135(11):3002-7. doi: 10.1039/c0an00554a. Epub 2010 Sep 29.

PMID:
20877906
15.

Chiral recognition based on enantioselectively aggregation-induced emission.

Zheng YS, Hu YJ.

J Org Chem. 2009 Aug 7;74(15):5660-3. doi: 10.1021/jo900527e.

PMID:
19552435
16.

Simultaneous determination of both the enantiomeric composition and concentration of a chiral substrate with one fluorescent sensor.

Yu S, Plunkett W, Kim M, Pu L.

J Am Chem Soc. 2012 Dec 19;134(50):20282-5. doi: 10.1021/ja3101165. Epub 2012 Dec 11.

PMID:
23214478
17.

Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.

Wen K, Yu S, Huang Z, Chen L, Xiao M, Yu X, Pu L.

J Am Chem Soc. 2015 Apr 8;137(13):4517-24. doi: 10.1021/jacs.5b01049. Epub 2015 Mar 31.

PMID:
25790271
18.
19.

Direct determination of the enantiomeric purity or enantiomeric composition of methylpropionates using a single capacitive microsensor.

Kurzawski P, Bogdanski A, Schurig V, Wimmer R, Hierlemann A.

Anal Chem. 2009 Mar 1;81(5):1969-75. doi: 10.1021/ac802455c.

PMID:
19191479
20.

Chiral determination of amino acids by capillary electrophoresis and laser-induced fluorescence at picomolar concentrations.

Vandenabeele-Trambouze O, Albert M, Bayle C, Couderc F, Commeyras A, Despois D, Dobrijevic M, Loustalot MF.

J Chromatogr A. 2000 Oct 13;894(1-2):259-66.

PMID:
11100868

Supplemental Content

Support Center