Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

Brain stimulation and inhibitory control.

Juan CH, Muggleton NG.

Brain Stimul. 2012 Apr;5(2):63-9. doi: 10.1016/j.brs.2012.03.012. Epub 2012 Apr 3.

PMID:
22494830
2.

Inhibitory control and the frontal eye fields.

Muggleton NG, Chen CY, Tzeng OJ, Hung DL, Juan CH.

J Cogn Neurosci. 2010 Dec;22(12):2804-12. doi: 10.1162/jocn.2010.21416.

PMID:
20044887
3.

Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation.

Lee HW, Lu MS, Chen CY, Muggleton NG, Hsu TY, Juan CH.

Behav Brain Res. 2016 Jan 1;296:459-67. doi: 10.1016/j.bbr.2015.08.024. Epub 2015 Aug 21.

PMID:
26304720
4.

Control of prepotent responses by the superior medial frontal cortex.

Chen CY, Muggleton NG, Tzeng OJ, Hung DL, Juan CH.

Neuroimage. 2009 Jan 15;44(2):537-45. doi: 10.1016/j.neuroimage.2008.09.005. Epub 2008 Sep 24.

PMID:
18852054
5.

The role of right prefrontal and medial cortex in response inhibition: interfering with action restraint and action cancellation using transcranial magnetic brain stimulation.

Dambacher F, Sack AT, Lobbestael J, Arntz A, Brugmann S, Schuhmann T.

J Cogn Neurosci. 2014 Aug;26(8):1775-84. doi: 10.1162/jocn_a_00595. Epub 2014 Feb 24.

PMID:
24564464
6.

Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task.

Watanabe T, Hanajima R, Shirota Y, Tsutsumi R, Shimizu T, Hayashi T, Terao Y, Ugawa Y, Katsura M, Kunimatsu A, Ohtomo K, Hirose S, Miyashita Y, Konishi S.

J Neurosci. 2015 Mar 25;35(12):4813-23. doi: 10.1523/JNEUROSCI.3761-14.2015.

7.

Dissociating the contributions of human frontal eye fields and posterior parietal cortex to visual search.

Muggleton NG, Kalla R, Juan CH, Walsh V.

J Neurophysiol. 2011 Jun;105(6):2891-6. doi: 10.1152/jn.01149.2009. Epub 2011 Apr 13.

8.

Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex.

Moisa M, Siebner HR, Pohmann R, Thielscher A.

J Neurosci. 2012 May 23;32(21):7244-52. doi: 10.1523/JNEUROSCI.2757-11.2012.

9.

Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus.

Jacobson L, Javitt DC, Lavidor M.

J Cogn Neurosci. 2011 Nov;23(11):3380-7. doi: 10.1162/jocn_a_00020. Epub 2011 Mar 31.

PMID:
21452949
10.

Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex.

Hsu TY, Tseng LY, Yu JX, Kuo WJ, Hung DL, Tzeng OJ, Walsh V, Muggleton NG, Juan CH.

Neuroimage. 2011 Jun 15;56(4):2249-57. doi: 10.1016/j.neuroimage.2011.03.059. Epub 2011 Apr 1.

PMID:
21459149
11.

Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed.

Rosso C, Valabregue R, Arbizu C, Ferrieux S, Vargas P, Humbert F, Attal Y, Messé A, Zavanone C, Meunier S, Cohen L, Delmaire C, Thielscher A, Herz DM, Siebner HR, Samson Y, Lehéricy S.

Brain Stimul. 2014 Jan-Feb;7(1):122-9. doi: 10.1016/j.brs.2013.08.007. Epub 2013 Sep 25.

PMID:
24099835
12.

Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance.

Coxon JP, Van Impe A, Wenderoth N, Swinnen SP.

J Neurosci. 2012 Jun 13;32(24):8401-12. doi: 10.1523/JNEUROSCI.6360-11.2012.

13.

Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study.

Rushworth MF, Hadland KA, Paus T, Sipila PK.

J Neurophysiol. 2002 May;87(5):2577-92.

14.

Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition.

Zandbelt BB, Bloemendaal M, Hoogendam JM, Kahn RS, Vink M.

J Cogn Neurosci. 2013 Feb;25(2):157-74. doi: 10.1162/jocn_a_00309. Epub 2012 Oct 15.

PMID:
23066733
15.

Transcranial direct current stimulation changes human endowment effect.

Votinov M, Aso T, Koganemaru S, Fukuyama H, Mima T.

Neurosci Res. 2013 Aug;76(4):251-6. doi: 10.1016/j.neures.2013.05.007. Epub 2013 Jun 7.

PMID:
23751446
16.

Methylphenidate effects on prefrontal functioning during attentional-capture and response inhibition.

Pauls AM, O'Daly OG, Rubia K, Riedel WJ, Williams SC, Mehta MA.

Biol Psychiatry. 2012 Jul 15;72(2):142-9. doi: 10.1016/j.biopsych.2012.03.028. Epub 2012 May 1.

PMID:
22552046
17.

Frontal eye field involvement in sustaining visual attention: evidence from transcranial magnetic stimulation.

Esterman M, Liu G, Okabe H, Reagan A, Thai M, DeGutis J.

Neuroimage. 2015 May 1;111:542-8. doi: 10.1016/j.neuroimage.2015.01.044. Epub 2015 Feb 3.

PMID:
25655445
18.

Increased primary motor cortical excitability by a single-pulse transcranial magnetic stimulation over the supplementary motor area.

Shirota Y, Hamada M, Terao Y, Ohminami S, Tsutsumi R, Ugawa Y, Hanajima R.

Exp Brain Res. 2012 Jun;219(3):339-49. doi: 10.1007/s00221-012-3095-7. Epub 2012 Apr 25.

PMID:
22532164
19.

The timing and intensity of transcranial magnetic stimulation, and the scalp site stimulated, as variables influencing motor sequence performance in healthy subjects.

Gregori B, Currà A, Dinapoli L, Bologna M, Accornero N, Berardelli A.

Exp Brain Res. 2005 Sep;166(1):43-55. Epub 2005 May 11.

PMID:
15887005
20.

Frontal non-invasive neurostimulation modulates antisaccade preparation in non-human primates.

Valero-Cabre A, Wattiez N, Monfort M, François C, Rivaud-Péchoux S, Gaymard B, Pouget P.

PLoS One. 2012;7(6):e38674. doi: 10.1371/journal.pone.0038674. Epub 2012 Jun 6.

Supplemental Content

Support Center