Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Discreteness-induced concentration inversion in mesoscopic chemical systems.

Ramaswamy R, González-Segredo N, Sbalzarini IF, Grima R.

Nat Commun. 2012 Apr 10;3:779. doi: 10.1038/ncomms1775.

PMID:
22491327
3.
4.

Intrinsic noise alters the frequency spectrum of mesoscopic oscillatory chemical reaction systems.

Ramaswamy R, Sbalzarini IF.

Sci Rep. 2011;1:154. doi: 10.1038/srep00154. Epub 2011 Nov 11.

5.

Stochastic theory of large-scale enzyme-reaction networks: finite copy number corrections to rate equation models.

Thomas P, Straube AV, Grima R.

J Chem Phys. 2010 Nov 21;133(19):195101. doi: 10.1063/1.3505552.

PMID:
21090871
6.

Molecular discreteness in reaction-diffusion systems yields steady states not seen in the continuum limit.

Togashi Y, Kaneko K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 1):020901. Epub 2004 Aug 23.

PMID:
15447471
7.

Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions.

Grima R.

Phys Rev Lett. 2009 May 29;102(21):218103. Epub 2009 May 29.

PMID:
19519139
8.

Entropy production in a mesoscopic chemical reaction system with oscillatory and excitable dynamics.

Rao T, Xiao T, Hou Z.

J Chem Phys. 2011 Jun 7;134(21):214112. doi: 10.1063/1.3598111.

PMID:
21663349
9.

Discreteness-induced transitions in multibody reaction systems.

Saito Y, Sughiyama Y, Kaneko K, Kobayashi TJ.

Phys Rev E. 2016 Aug;94(2-1):022140. doi: 10.1103/PhysRevE.94.022140. Epub 2016 Aug 29.

PMID:
27627279
10.

A study of the accuracy of moment-closure approximations for stochastic chemical kinetics.

Grima R.

J Chem Phys. 2012 Apr 21;136(15):154105. doi: 10.1063/1.3702848.

PMID:
22519313
11.

Discreteness-induced transition in catalytic reaction networks.

Awazu A, Kaneko K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041915. Epub 2007 Oct 25.

PMID:
17995034
12.

Stochastic bimodalities in deterministically monostable reversible chemical networks due to network topology reduction.

Artyomov MN, Mathur M, Samoilov MS, Chakraborty AK.

J Chem Phys. 2009 Nov 21;131(19):195103. doi: 10.1063/1.3264948.

13.

Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

Ramaswamy R, Sbalzarini IF, González-Segredo N.

PLoS One. 2011 Jan 28;6(1):e16045. doi: 10.1371/journal.pone.0016045.

14.

Validity conditions for moment closure approximations in stochastic chemical kinetics.

Schnoerr D, Sanguinetti G, Grima R.

J Chem Phys. 2014 Aug 28;141(8):084103. doi: 10.1063/1.4892838.

PMID:
25173001
15.

Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.

Bazant MZ.

Acc Chem Res. 2013 May 21;46(5):1144-60. doi: 10.1021/ar300145c. Epub 2013 Mar 22.

16.

Stochastic self-assembly of incommensurate clusters.

D'Orsogna MR, Lakatos G, Chou T.

J Chem Phys. 2012 Feb 28;136(8):084110. doi: 10.1063/1.3688231.

PMID:
22380035
17.

Distinguishing between discreteness effects in stochastic reaction processes.

Haruna T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052814. Epub 2015 May 26.

PMID:
26066219
18.

Intrinsic noise analyzer: a software package for the exploration of stochastic biochemical kinetics using the system size expansion.

Thomas P, Matuschek H, Grima R.

PLoS One. 2012;7(6):e38518. doi: 10.1371/journal.pone.0038518. Epub 2012 Jun 12.

Supplemental Content

Support Center