Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 182

1.

QTL analysis of soybean seed weight across multi-genetic backgrounds and environments.

Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W.

Theor Appl Genet. 2012 Aug;125(4):671-83. doi: 10.1007/s00122-012-1859-x.

PMID:
22481120
2.

QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines.

Palomeque L, Li-Jun L, Li W, Hedges B, Cober ER, Rajcan I.

Theor Appl Genet. 2009 Aug;119(3):417-27. doi: 10.1007/s00122-009-1049-7.

PMID:
19462148
3.

QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines.

Palomeque L, Li-Jun L, Li W, Hedges B, Cober ER, Rajcan I.

Theor Appl Genet. 2009 Aug;119(3):429-36. doi: 10.1007/s00122-009-1048-8.

PMID:
19462149
4.

Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments.

Yang Z, Xin D, Liu C, Jiang H, Han X, Sun Y, Qi Z, Hu G, Chen Q.

Mol Genet Genomics. 2013 Dec;288(12):651-67. Erratum in: Mol Genet Genomics. 2013 Dec;288(12):669.

PMID:
24022198
5.

Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars 'Conrad' and 'Hefeng 25'.

Li X, Han Y, Teng W, Zhang S, Yu K, Poysa V, Anderson T, Ding J, Li W.

Theor Appl Genet. 2010 Aug;121(4):651-8. doi: 10.1007/s00122-010-1337-2.

PMID:
20390244
6.

Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed.

Han Y, Xie D, Teng W, Zhang S, Chang W, Li W.

Theor Appl Genet. 2011 May;122(8):1481-8. doi: 10.1007/s00122-011-1547-2.

PMID:
21344183
7.

Identification of QTL underlying vitamin E contents in soybean seed among multiple environments.

Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W.

Theor Appl Genet. 2010 May;120(7):1405-13. doi: 10.1007/s00122-010-1264-2.

8.

QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.).

Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W.

Heredity (Edinb). 2009 Apr;102(4):372-80. doi: 10.1038/hdy.2008.108.

9.

Quantative trait loci of seed traits for soybean in multiple environments.

Che JY, Ding JJ, Liu CY, Xin DW, Jiang HW, Hu GH, Chen QS.

Genet Mol Res. 2014 May 23;13(2):4000-12. doi: 10.4238/2014.May.23.11.

10.

Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

Eskandari M, Cober ER, Rajcan I.

Theor Appl Genet. 2013 Jun;126(6):1677-87. doi: 10.1007/s00122-013-2083-z.

PMID:
23536049
11.

Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

Eskandari M, Cober ER, Rajcan I.

Theor Appl Genet. 2013 Feb;126(2):483-95. doi: 10.1007/s00122-012-1995-3.

PMID:
23192670
12.

QTL consistency and meta-analysis for grain yield components in three generations in maize.

Li JZ, Zhang ZW, Li YL, Wang QL, Zhou YG.

Theor Appl Genet. 2011 Mar;122(4):771-82. doi: 10.1007/s00122-010-1485-4.

PMID:
21063866
13.

Mapping isoflavone QTL with main, epistatic and QTL × environment effects in recombinant inbred lines of soybean.

Wang Y, Han Y, Zhao X, Li Y, Teng W, Li D, Zhan Y, Li W.

PLoS One. 2015 Mar 4;10(3):e0118447. doi: 10.1371/journal.pone.0118447.

14.

Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses.

Rossi ME, Orf JH, Liu LJ, Dong Z, Rajcan I.

Theor Appl Genet. 2013 Jul;126(7):1809-23. doi: 10.1007/s00122-013-2094-9.

PMID:
23595202
15.

Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans.

Palomeque L, Liu LJ, Li W, Hedges BR, Cober ER, Smid MP, Lukens L, Rajcan I.

Theor Appl Genet. 2010 Mar;120(5):997-1003. doi: 10.1007/s00122-009-1227-7.

PMID:
20012262
16.

Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments.

Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W.

Theor Appl Genet. 2009 May;118(8):1455-63. doi: 10.1007/s00122-009-0994-5.

PMID:
19266178
17.

A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max).

Ikeda T, Ohnishi S, Senda M, Miyoshi T, Ishimoto M, Kitamura K, Funatsuki H.

Theor Appl Genet. 2009 May;118(8):1477-88. doi: 10.1007/s00122-009-0996-3.

PMID:
19255739
18.

Impact of epistasis and QTL x environment interaction on the accumulation of seed mass of soybean (Glycine max L. Merr.).

Han Y, Teng W, Sun D, Du Y, Qiu L, Xu X, Li W.

Genet Res (Camb). 2008 Dec;90(6):481-91. doi: 10.1017/S0016672308009865.

PMID:
19123966
19.

Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds.

Gutierrez-Gonzalez JJ, Vuong TD, Zhong R, Yu O, Lee JD, Shannon G, Ellersieck M, Nguyen HT, Sleper DA.

Theor Appl Genet. 2011 Dec;123(8):1375-85. doi: 10.1007/s00122-011-1673-x.

PMID:
21850478
20.

Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds.

Panthee DR, Pantalone VR, Sams CE, Saxton AM, West DR, Orf JH, Killam AS.

Theor Appl Genet. 2006 Feb;112(3):546-53.

PMID:
16341836
Items per page

Supplemental Content

Support Center