Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development.

Ridzuan MA, Moon RW, Knuepfer E, Black S, Holder AA, Green JL.

PLoS One. 2012;7(3):e33845. doi: 10.1371/journal.pone.0033845. Epub 2012 Mar 30.

2.

The motor complex of Plasmodium falciparum: phosphorylation by a calcium-dependent protein kinase.

Green JL, Rees-Channer RR, Howell SA, Martin SR, Knuepfer E, Taylor HM, Grainger M, Holder AA.

J Biol Chem. 2008 Nov 7;283(45):30980-9. doi: 10.1074/jbc.M803129200. Epub 2008 Sep 3.

3.

GAP45 phosphorylation controls assembly of the Toxoplasma myosin XIV complex.

Gilk SD, Gaskins E, Ward GE, Beckers CJ.

Eukaryot Cell. 2009 Feb;8(2):190-6. doi: 10.1128/EC.00201-08. Epub 2008 Dec 1.

4.

Functional dissection of the apicomplexan glideosome molecular architecture.

Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D.

Cell Host Microbe. 2010 Oct 21;8(4):343-57. doi: 10.1016/j.chom.2010.09.002.

5.

The MTIP-myosin A complex in blood stage malaria parasites.

Green JL, Martin SR, Fielden J, Ksagoni A, Grainger M, Yim Lim BY, Molloy JE, Holder AA.

J Mol Biol. 2006 Feb 3;355(5):933-41. Epub 2005 Nov 28.

PMID:
16337961
6.

Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites.

Bergman LW, Kaiser K, Fujioka H, Coppens I, Daly TM, Fox S, Matuschewski K, Nussenzweig V, Kappe SH.

J Cell Sci. 2003 Jan 1;116(Pt 1):39-49.

7.

The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling.

Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P.

J Proteome Res. 2012 Nov 2;11(11):5323-37. doi: 10.1021/pr300557m. Epub 2012 Oct 18.

PMID:
23025827
8.

Inhibition of Plasmodium falciparum CDPK1 by conditional expression of its J-domain demonstrates a key role in schizont development.

Azevedo MF, Sanders PR, Krejany E, Nie CQ, Fu P, Bach LA, Wunderlich G, Crabb BS, Gilson PR.

Biochem J. 2013 Jun 15;452(3):433-41. doi: 10.1042/BJ20130124.

PMID:
23548171
9.

Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex.

Jones ML, Kitson EL, Rayner JC.

Mol Biochem Parasitol. 2006 May;147(1):74-84. Epub 2006 Feb 13.

PMID:
16513191
10.

Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion.

Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D.

PLoS Pathog. 2014 Nov 13;10(10):e1004504. doi: 10.1371/journal.ppat.1004504. eCollection 2014 Oct.

11.

Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum.

Yeoman JA, Hanssen E, Maier AG, Klonis N, Maco B, Baum J, Turnbull L, Whitchurch CB, Dixon MW, Tilley L.

Eukaryot Cell. 2011 Apr;10(4):556-64. doi: 10.1128/EC.00244-10. Epub 2011 Jan 14.

12.

Effects of calcium signaling on Plasmodium falciparum erythrocyte invasion and post-translational modification of gliding-associated protein 45 (PfGAP45).

Jones ML, Cottingham C, Rayner JC.

Mol Biochem Parasitol. 2009 Nov;168(1):55-62. doi: 10.1016/j.molbiopara.2009.06.007. Epub 2009 Jul 1.

13.

The Plasmodium Class XIV Myosin, MyoB, Has a Distinct Subcellular Location in Invasive and Motile Stages of the Malaria Parasite and an Unusual Light Chain.

Yusuf NA, Green JL, Wall RJ, Knuepfer E, Moon RW, Schulte-Huxel C, Stanway RR, Martin SR, Howell SA, Douse CH, Cota E, Tate EW, Tewari R, Holder AA.

J Biol Chem. 2015 May 8;290(19):12147-64. doi: 10.1074/jbc.M115.637694. Epub 2015 Mar 23.

14.

Pellicle formation in the malaria parasite.

Kono M, Heincke D, Wilcke L, Wong TW, Bruns C, Herrmann S, Spielmann T, Gilberger TW.

J Cell Sci. 2016 Feb 15;129(4):673-80. doi: 10.1242/jcs.181230. Epub 2016 Jan 13.

15.

Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites.

Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J, Ralph SA, Norton RS, Cowman AF.

J Biol Chem. 2010 May 7;285(19):14815-22. doi: 10.1074/jbc.M109.080770. Epub 2010 Mar 12.

16.

Regulation of Plasmodium falciparum glideosome associated protein 45 (PfGAP45) phosphorylation.

Thomas DC, Ahmed A, Gilberger TW, Sharma P.

PLoS One. 2012;7(4):e35855. doi: 10.1371/journal.pone.0035855. Epub 2012 Apr 27.

17.

The structure of the D3 domain of Plasmodium falciparum myosin tail interacting protein MTIP in complex with a nanobody.

Khamrui S, Turley S, Pardon E, Steyaert J, Fan E, Verlinde CL, Bergman LW, Hol WG.

Mol Biochem Parasitol. 2013 Aug;190(2):87-91. doi: 10.1016/j.molbiopara.2013.06.003. Epub 2013 Jul 4.

PMID:
23831371
18.

The compact conformation of the Plasmodium knowlesi myosin tail interacting protein MTIP in complex with the C-terminal helix of myosin A.

Turley S, Khamrui S, Bergman LW, Hol WG.

Mol Biochem Parasitol. 2013 Aug;190(2):56-9. doi: 10.1016/j.molbiopara.2013.06.004. Epub 2013 Jul 4.

19.

Myosin B of Plasmodium falciparum (PfMyoB): in silico prediction of its three-dimensional structure and its possible interaction with MTIP.

Hernández PC, Morales L, Castellanos IC, Wasserman M, Chaparro-Olaya J.

Parasitol Res. 2017 Apr;116(4):1373-1382. doi: 10.1007/s00436-017-5417-y. Epub 2017 Mar 7.

PMID:
28265752
20.

Interaction and dynamics of the Plasmodium falciparum MTIP-MyoA complex, a key component of the invasion motor in the malaria parasite.

Thomas JC, Green JL, Howson RI, Simpson P, Moss DK, Martin SR, Holder AA, Cota E, Tate EW.

Mol Biosyst. 2010 Mar;6(3):494-8. doi: 10.1039/b922093c. Epub 2010 Jan 27.

PMID:
20174678

Supplemental Content

Support Center