Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 182

1.

Genomic associations for drought tolerance on the short arm of wheat chromosome 4B.

Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh N.

Funct Integr Genomics. 2012 Aug;12(3):447-64. doi: 10.1007/s10142-012-0276-1. Epub 2012 Apr 5.

PMID:
22476619
2.

Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population.

Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y.

Plant Cell Environ. 2009 Jul;32(7):758-79. doi: 10.1111/j.1365-3040.2009.01956.x. Epub 2009 Feb 9.

3.

Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.

Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baenziger PS, Walia H.

Plant Physiol. 2013 Apr;161(4):1806-19. doi: 10.1104/pp.113.214262. Epub 2013 Feb 20.

4.

Quantitative trait loci associated with drought tolerance at reproductive stage in rice.

Lanceras JC, Pantuwan G, Jongdee B, Toojinda T.

Plant Physiol. 2004 May;135(1):384-99. Epub 2004 Apr 30.

5.

Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes.

Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP.

Theor Appl Genet. 2014 Apr;127(4):791-807. doi: 10.1007/s00122-013-2257-8. Epub 2014 Jan 10.

PMID:
24408378
6.

Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits.

Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS.

PLoS One. 2015 May 13;10(5):e0122165. doi: 10.1371/journal.pone.0122165. eCollection 2015.

7.

Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).

Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL.

Genome. 2017 Jan;60(1):26-45. doi: 10.1139/gen-2016-0017. Epub 2016 Sep 15.

PMID:
27996306
8.

Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments.

Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T.

Theor Appl Genet. 2012 Nov;125(7):1473-85. doi: 10.1007/s00122-012-1927-2. Epub 2012 Jul 8.

PMID:
22772727
9.

Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems.

Wade LJ, Bartolome V, Mauleon R, Vasant VD, Prabakar SM, Chelliah M, Kameoka E, Nagendra K, Reddy KR, Varma CM, Patil KG, Shrestha R, Al-Shugeairy Z, Al-Ogaidi F, Munasinghe M, Gowda V, Semon M, Suralta RR, Shenoy V, Vadez V, Serraj R, Shashidhar HE, Yamauchi A, Babu RC, Price A, McNally KL, Henry A.

PLoS One. 2015 Apr 24;10(4):e0124127. doi: 10.1371/journal.pone.0124127. eCollection 2015.

10.

Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.

Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R.

BMC Plant Biol. 2011 Apr 22;11:70. doi: 10.1186/1471-2229-11-70.

11.

Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci.

Jordan MC, Somers DJ, Banks TW.

Plant Biotechnol J. 2007 May;5(3):442-53. Epub 2007 Mar 26.

12.

Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat.

Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD.

Theor Appl Genet. 2011 Oct;123(6):1043-53. doi: 10.1007/s00122-011-1646-0. Epub 2011 Jul 13.

PMID:
21751014
13.

Genetic Mapping Reveals Broader Role of Vrn-H3 Gene in Root and Shoot Development beyond Heading in Barley.

Arifuzzaman M, Günal S, Bungartz A, Muzammil S, P Afsharyan N, Léon J, Naz AA.

PLoS One. 2016 Jul 21;11(7):e0158718. doi: 10.1371/journal.pone.0158718. eCollection 2016. Erratum in: PLoS One. 2017 May 9;12 (5):e0177612.

14.

Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes.

Yang D, Liu Y, Cheng H, Chang L, Chen J, Chai S, Li M.

BMC Genet. 2016 Jun 28;17(1):94. doi: 10.1186/s12863-016-0399-9.

15.

Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations.

Zhang H, Cui F, Wang L, Li J, Ding A, Zhao C, Bao Y, Yang Q, Wang H.

J Genet. 2013;92(2):213-31.

16.

QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes.

Ogrodowicz P, Adamski T, Mikołajczak K, Kuczyńska A, Surma M, Krajewski P, Sawikowska A, Górny AG, Gudyś K, Szarejko I, Guzy-Wróbelska J, Krystkowiak K.

J Appl Genet. 2017 Feb;58(1):49-65. doi: 10.1007/s13353-016-0363-4. Epub 2016 Aug 9.

17.

Mapping QTLs for plant phenology and production traits using indica rice (Oryza sativa L.) lines adapted to rainfed environment.

Suji KK, Biji KR, Poornima R, Prince KS, Amudha K, Kavitha S, Mankar S, Babu RC.

Mol Biotechnol. 2012 Oct;52(2):151-60. doi: 10.1007/s12033-011-9482-7.

PMID:
22198727
18.

Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments.

Wu X, Chang X, Jing R.

PLoS One. 2012;7(2):e31249. doi: 10.1371/journal.pone.0031249. Epub 2012 Feb 17.

19.

Prioritizing quantitative trait loci for root system architecture in tetraploid wheat.

Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R.

J Exp Bot. 2016 Feb;67(4):1161-78. doi: 10.1093/jxb/erw039.

20.

Association mapping for yield and yield-contributing traits in barley under drought conditions with genome-based SSR markers.

Abou-Elwafa SF.

C R Biol. 2016 May-Jun;339(5-6):153-62. doi: 10.1016/j.crvi.2016.03.001. Epub 2016 Apr 26.

PMID:
27129392

Supplemental Content

Support Center