Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Epigenetic silencing of the circadian clock gene CRY1 is associated with an indolent clinical course in chronic lymphocytic leukemia.

Hanoun M, Eisele L, Suzuki M, Greally JM, Hüttmann A, Aydin S, Scholtysik R, Klein-Hitpass L, Dührsen U, Dürig J.

PLoS One. 2012;7(3):e34347. doi: 10.1371/journal.pone.0034347. Epub 2012 Mar 28.

2.

Combined PER2 and CRY1 expression predicts outcome in chronic lymphocytic leukemia.

Eisele L, Prinz R, Klein-Hitpass L, Nückel H, Lowinski K, Thomale J, Moeller LC, Dührsen U, Dürig J.

Eur J Haematol. 2009 Oct;83(4):320-7. doi: 10.1111/j.1600-0609.2009.01287.x. Epub 2009 Jun 2.

PMID:
19500131
3.

ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile.

Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, Zhao H, Ibbotson RE, Orchard JA, Davis Z, Stetler-Stevenson M, Raffeld M, Arthur DC, Marti GE, Wilson WH, Hamblin TJ, Oscier DG, Staudt LM.

Blood. 2003 Jun 15;101(12):4944-51. Epub 2003 Feb 20.

4.

The prognostic evaluation of CLLU1 expression levels in 50 Chinese patients with chronic lymphocytic leukemia.

Chen L, Li J, Zheng W, Zhang Y, Wu Y, Li L, Qian S, Xu W.

Leuk Lymphoma. 2007 Sep;48(9):1785-92.

PMID:
17786715
5.

Distinctive IgVH gene segments usage and mutation status in Chinese patients with chronic lymphocytic leukemia.

Chen L, Zhang Y, Zheng W, Wu Y, Qiao C, Fan L, Xu W, Li J.

Leuk Res. 2008 Oct;32(10):1491-8. doi: 10.1016/j.leukres.2008.02.005. Epub 2008 Mar 21.

PMID:
18359082
6.

Concomitant heterochromatinisation and down-regulation of gene expression unveils epigenetic silencing of RELB in an aggressive subset of chronic lymphocytic leukemia in males.

Marteau JB, Rigaud O, Brugat T, Gault N, Vallat L, Kruhoffer M, Orntoft TF, Nguyen-Khac F, Chevillard S, Merle-Beral H, Delic J.

BMC Med Genomics. 2010 Nov 10;3:53. doi: 10.1186/1755-8794-3-53.

7.

Large-scale analysis of DNA methylation in chronic lymphocytic leukemia.

Rahmatpanah FB, Carstens S, Hooshmand SI, Welsh EC, Sjahputera O, Taylor KH, Bennett LB, Shi H, Davis JW, Arthur GL, Shanafelt TD, Kay NE, Wooldridge JE, Caldwell CW.

Epigenomics. 2009 Oct;1(1):39-61. doi: 10.2217/epi.09.10.

8.

450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments.

Cahill N, Bergh AC, Kanduri M, Göransson-Kultima H, Mansouri L, Isaksson A, Ryan F, Smedby KE, Juliusson G, Sundström C, Rosén A, Rosenquist R.

Leukemia. 2013 Jan;27(1):150-8. doi: 10.1038/leu.2012.245. Epub 2012 Aug 27.

PMID:
22922567
9.

CD38 as a prognostic factor in B cell chronic lymphocytic leukaemia (B-CLL): comparison of three approaches to analyze its expression.

Boonstra JG, van Lom K, Langerak AW, Graveland WJ, Valk PJ, Kraan J, van 't Veer MB, Gratama JW.

Cytometry B Clin Cytom. 2006 May;70(3):136-41.

10.

Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia.

Schroers R, Griesinger F, Trümper L, Haase D, Kulle B, Klein-Hitpass L, Sellmann L, Dührsen U, Dürig J.

Leukemia. 2005 May;19(5):750-8.

PMID:
15759031
11.

Uncovering the DNA methylome in chronic lymphocytic leukemia.

Cahill N, Rosenquist R.

Epigenetics. 2013 Feb;8(2):138-48. doi: 10.4161/epi.23439. Epub 2013 Jan 15. Review.

12.

Assessment of Promoter Methylation Identifies PTCH as a Putative Tumor-suppressor Gene in Human CLL.

Schmidt-Wolf IG, Plass C, Byrd JC, Frevel K, Pietsch T, Waha A.

Anticancer Res. 2016 Sep;36(9):4515-9.

PMID:
27630290
13.

Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia.

Kanduri M, Cahill N, Göransson H, Enström C, Ryan F, Isaksson A, Rosenquist R.

Blood. 2010 Jan 14;115(2):296-305. doi: 10.1182/blood-2009-07-232868. Epub 2009 Nov 6. Erratum in: Blood. 2014 Jan 9;123(2):300.

14.

ATM, CTLA4, MNDA, and HEM1 in high versus low CD38 expressing B-cell chronic lymphocytic leukemia.

Joshi AD, Hegde GV, Dickinson JD, Mittal AK, Lynch JC, Eudy JD, Armitage JO, Bierman PJ, Bociek RG, Devetten MP, Vose JM, Joshi SS.

Clin Cancer Res. 2007 Sep 15;13(18 Pt 1):5295-304.

15.

High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival.

Kotaskova J, Tichy B, Trbusek M, Francova HS, Kabathova J, Malcikova J, Doubek M, Brychtova Y, Mayer J, Pospisilova S.

J Mol Diagn. 2010 May;12(3):328-34. doi: 10.2353/jmoldx.2010.090100. Epub 2010 Mar 12.

16.

CLLU1 expression levels predict time to initiation of therapy and overall survival in chronic lymphocytic leukemia.

Buhl AM, Jurlander J, Geisler CH, Pedersen LB, Andersen MK, Josefsson P, Petersen JH, Leffers H.

Eur J Haematol. 2006 Jun;76(6):455-64. Epub 2006 Mar 9.

PMID:
16529606
17.
18.
19.

Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets.

Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, Bembea M, Liu TH, Heerema NA, Rassenti L, Liyanarachchi S, Davuluri R, Byrd JC, Plass C.

Cancer Res. 2004 Apr 1;64(7):2424-33.

20.

Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia.

Rana S, Munawar M, Shahid A, Malik M, Ullah H, Fatima W, Mohsin S, Mahmood S.

Mol Biol Rep. 2014 Jan;41(1):95-103. doi: 10.1007/s11033-013-2841-7. Epub 2013 Nov 5.

PMID:
24190490

Supplemental Content

Support Center