Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models.

Zhang Q, Liu S, Ge D, Zhang Q, Xue Y, Xiong Z, Abdel-Mageed AB, Myers L, Hill SM, Rowan BG, Sartor O, Melamed J, Chen Z, You Z.

Cancer Res. 2012 May 15;72(10):2589-99. doi: 10.1158/0008-5472.CAN-11-3795. Epub 2012 Mar 28.

2.

Interleukin-17 promotes development of castration-resistant prostate cancer potentially through creating an immunotolerant and pro-angiogenic tumor microenvironment.

Zhang Q, Liu S, Zhang Q, Xiong Z, Wang AR, Myers L, Melamed J, Tang WW, You Z.

Prostate. 2014 Jun;74(8):869-79. doi: 10.1002/pros.22805. Epub 2014 Apr 1.

3.

Loss of survivin in the prostate epithelium impedes carcinogenesis in a mouse model of prostate adenocarcinoma.

Adisetiyo H, Liang M, Liao CP, Aycock-Williams A, Cohen MB, Xu S, Neamati N, Conway EM, Cheng CY, Nikitin AY, Roy-Burman P.

PLoS One. 2013 Jul 31;8(7):e69484. doi: 10.1371/journal.pone.0069484. Print 2013.

4.

Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma.

Ratnacaram CK, Teletin M, Jiang M, Meng X, Chambon P, Metzger D.

Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2521-6. doi: 10.1073/pnas.0712021105. Epub 2008 Feb 11.

5.

Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis.

Zhong C, Saribekyan G, Liao CP, Cohen MB, Roy-Burman P.

Cancer Res. 2006 Feb 15;66(4):2188-94.

6.

Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer.

Liu L, Ge D, Ma L, Mei J, Liu S, Zhang Q, Ren F, Liao H, Pu Q, Wang T, You Z.

J Thorac Oncol. 2012 Jul;7(7):1091-100. doi: 10.1097/JTO.0b013e3182542752.

7.

A reduction in Pten tumor suppressor activity promotes ErbB-2-induced mouse prostate adenocarcinoma formation through the activation of signaling cascades downstream of PDK1.

Rodriguez OC, Lai EW, Vissapragada S, Cromelin C, Avetian M, Salinas P, Ramos H, Kallakury B, Casimiro M, Lisanti MP, Tanowitz HB, Pacak K, Glazer RI, Avantaggiati M, Albanese C.

Am J Pathol. 2009 Jun;174(6):2051-60. doi: 10.2353/ajpath.2009.080859. Epub 2009 May 14.

8.

Timp3 loss accelerates tumour invasion and increases prostate inflammation in a mouse model of prostate cancer.

Adissu HA, McKerlie C, Di Grappa M, Waterhouse P, Xu Q, Fang H, Khokha R, Wood GA.

Prostate. 2015 Dec;75(16):1831-43. doi: 10.1002/pros.23056. Epub 2015 Sep 1.

PMID:
26332574
9.

The steroid receptor coactivator-3 is required for the development of castration-resistant prostate cancer.

Tien JC, Liu Z, Liao L, Wang F, Xu Y, Wu YL, Zhou N, Ittmann M, Xu J.

Cancer Res. 2013 Jul 1;73(13):3997-4008. doi: 10.1158/0008-5472.CAN-12-3929. Epub 2013 May 6.

10.

PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth.

Blando J, Portis M, Benavides F, Alexander A, Mills G, Dave B, Conti CJ, Kim J, Walker CL.

Am J Pathol. 2009 May;174(5):1869-79. doi: 10.2353/ajpath.2009.080055.

11.

Concomitant loss of EAF2/U19 and Pten synergistically promotes prostate carcinogenesis in the mouse model.

Ai J, Pascal LE, O'Malley KJ, Dar JA, Isharwal S, Qiao Z, Ren B, Rigatti LH, Dhir R, Xiao W, Nelson JB, Wang Z.

Oncogene. 2014 May 1;33(18):2286-94. doi: 10.1038/onc.2013.190. Epub 2013 May 27.

12.

Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition.

Zhang Q, Liu S, Parajuli KR, Zhang W, Zhang K, Mo Z, Liu J, Chen Z, Yang S, Wang AR, Myers L, You Z.

Oncogene. 2017 Feb 2;36(5):687-699. doi: 10.1038/onc.2016.240. Epub 2016 Jul 4.

13.

Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes.

Peek EM, Song W, Zhang H, Huang J, Chin AI.

Prostate. 2015 Apr 1;75(5):463-73. doi: 10.1002/pros.22932. Epub 2015 Jan 16.

PMID:
25597486
14.

Prostatic neoplasia in transgenic mice with prostate-directed overexpression of the c-myc oncoprotein.

Zhang X, Lee C, Ng PY, Rubin M, Shabsigh A, Buttyan R.

Prostate. 2000 Jun 1;43(4):278-85.

PMID:
10861747
15.

Cooperation between Stat3 and Akt signaling leads to prostate tumor development in transgenic mice.

Blando JM, Carbajal S, Abel E, Beltran L, Conti C, Fischer S, DiGiovanni J.

Neoplasia. 2011 Mar;13(3):254-65.

16.

Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors.

Kwak MK, Johnson DT, Zhu C, Lee SH, Ye DW, Luong R, Sun Z.

PLoS One. 2013;8(1):e53476. doi: 10.1371/journal.pone.0053476. Epub 2013 Jan 8.

17.

Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium.

Fu Y, Wey S, Wang M, Ye R, Liao CP, Roy-Burman P, Lee AS.

Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19444-9. doi: 10.1073/pnas.0807691105. Epub 2008 Nov 25.

18.

Targeting Th17-IL-17 Pathway in Prevention of Micro-Invasive Prostate Cancer in a Mouse Model.

Zhang Q, Liu S, Ge D, Cunningham DM, Huang F, Ma L, Burris TP, You Z.

Prostate. 2017 Jun;77(8):888-899. doi: 10.1002/pros.23343. Epub 2017 Feb 27.

PMID:
28240383
19.

IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis.

Hu Y, Ota N, Peng I, Refino CJ, Danilenko DM, Caplazi P, Ouyang W.

J Immunol. 2010 Apr 15;184(8):4307-16. doi: 10.4049/jimmunol.0903614. Epub 2010 Mar 15.

20.

Increased expression of MUC18 correlates with the metastatic progression of mouse prostate adenocarcinoma in the TRAMP model.

Wu GJ, Fu P, Chiang CF, Huss WJ, Greenberg NM, Wu MW.

J Urol. 2005 May;173(5):1778-83.

PMID:
15821586

Supplemental Content

Support Center