Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

The core protein of classical Swine Fever virus is dispensable for virus propagation in vitro.

Riedel C, Lamp B, Heimann M, König M, Blome S, Moennig V, Schüttler C, Thiel HJ, Rümenapf T.

PLoS Pathog. 2012;8(3):e1002598. doi: 10.1371/journal.ppat.1002598.

2.

Classical swine fever virus p7 protein is a viroporin involved in virulence in swine.

Gladue DP, Holinka LG, Largo E, Fernandez Sainz I, Carrillo C, O'Donnell V, Baker-Branstetter R, Lu Z, Ambroggio X, Risatti GR, Nieva JL, Borca MV.

J Virol. 2012 Jun;86(12):6778-91. doi: 10.1128/JVI.00560-12.

3.
4.

Characterization of the C-terminal sequence of NS5A necessary for the assembly and production of classical swine fever virus infectious particles.

Sheng C, Kou S, Jiang Q, Zhou C, Xiao J, Li J, Chen B, Zhao Y, Wang Y, Xiao M.

Res Vet Sci. 2014 Oct;97(2):449-54. doi: 10.1016/j.rvsc.2014.07.017.

PMID:
25218811
5.

Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation.

Moulin HR, Seuberlich T, Bauhofer O, Bennett LC, Tratschin JD, Hofmann MA, Ruggli N.

Virology. 2007 Sep 1;365(2):376-89.

6.

Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity.

Li LF, Yu J, Li Y, Wang J, Li S, Zhang L, Xia SL, Yang Q, Wang X, Yu S, Luo Y, Sun Y, Zhu Y, Munir M, Qiu HJ.

J Virol. 2016 Apr 14;90(9):4412-26. doi: 10.1128/JVI.02718-15.

7.

Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B.

Tamura T, Sakoda Y, Yoshino F, Nomura T, Yamamoto N, Sato Y, Okamatsu M, Ruggli N, Kida H.

J Virol. 2012 Aug;86(16):8602-13. doi: 10.1128/JVI.00551-12.

8.

Interaction between Core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine.

Gladue DP, Holinka LG, Fernandez-Sainz IJ, Prarat MV, O'Donnell V, Vepkhvadze NG, Lu Z, Risatti GR, Borca MV.

Virology. 2011 Mar 30;412(1):68-74. doi: 10.1016/j.virol.2010.12.060.

9.

Autocatalytic cleavage within classical swine fever virus NS3 leads to a functional separation of protease and helicase.

Lamp B, Riedel C, Wentz E, Tortorici MA, Rümenapf T.

J Virol. 2013 Nov;87(21):11872-83. doi: 10.1128/JVI.00754-13.

10.

Effect of NS3 and NS5B proteins on classical swine fever virus internal ribosome entry site-mediated translation and its host cellular translation.

Xiao M, Bai Y, Xu H, Geng X, Chen J, Wang Y, Chen J, Li B.

J Gen Virol. 2008 Apr;89(Pt 4):994-9. doi: 10.1099/vir.0.83341-0.

PMID:
18343841
11.

Identification of an NTPase motif in classical swine fever virus NS4B protein.

Gladue DP, Gavrilov BK, Holinka LG, Fernandez-Sainz IJ, Vepkhvadze NG, Rogers K, O'Donnell V, Risatti GR, Borca MV.

Virology. 2011 Mar 1;411(1):41-9. doi: 10.1016/j.virol.2010.12.028.

12.

Characterization of essential domains and plasticity of the classical Swine Fever virus Core protein.

Riedel C, Lamp B, Heimann M, Rümenapf T.

J Virol. 2010 Nov;84(21):11523-31. doi: 10.1128/JVI.00699-10.

13.

Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence.

Tamura T, Ruggli N, Nagashima N, Okamatsu M, Igarashi M, Mine J, Hofmann MA, Liniger M, Summerfield A, Kida H, Sakoda Y.

J Gen Virol. 2015 Sep;96(9):2623-35. doi: 10.1099/vir.0.000200.

PMID:
26018962
14.

[Research Progress in the Core Proteins of the Classical Swine Fever Virus].

Hou Y, Zhao D, Liu G, He F, Liu B, Fu S, Hao Y, Zhang W.

Bing Du Xue Bao. 2015 Sep;31(5):579-84. Review. Chinese.

PMID:
26738299
15.

Replication of classical swine fever virus strains and isolates in different porcine cell lines.

Grummer B, Fischer S, Depner K, Riebe R, Blome S, Greiser-Wilke I.

Dtsch Tierarztl Wochenschr. 2006 Apr;113(4):138-42.

PMID:
16716048
16.

Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase.

Wen G, Xue J, Shen Y, Zhang C, Pan Z.

Virus Res. 2009 Apr;141(1):63-70. doi: 10.1016/j.virusres.2008.12.014.

PMID:
19185595
17.

Human MxA protein inhibits the replication of classical swine fever virus.

Zhao Y, Pang D, Wang T, Yang X, Wu R, Ren L, Yuan T, Huang Y, Ouyang H.

Virus Res. 2011 Mar;156(1-2):151-5. doi: 10.1016/j.virusres.2011.01.008.

PMID:
21255621
18.

Hemoglobin subunit beta interacts with the capsid protein and antagonizes the growth of classical swine fever virus.

Li D, Dong H, Li S, Munir M, Chen J, Luo Y, Sun Y, Liu L, Qiu HJ.

J Virol. 2013 May;87(10):5707-17. doi: 10.1128/JVI.03130-12.

19.

Rescue of the highly virulent classical swine fever virus strain "Koslov" from cloned cDNA and first insights into genome variations relevant for virulence.

Fahnøe U, Pedersen AG, Risager PC, Nielsen J, Belsham GJ, Höper D, Beer M, Rasmussen TB.

Virology. 2014 Nov;468-470:379-87. doi: 10.1016/j.virol.2014.08.021.

20.

Interaction of structural core protein of classical swine fever virus with endoplasmic reticulum-associated degradation pathway protein OS9.

Gladue DP, O'Donnell V, Fernandez-Sainz IJ, Fletcher P, Baker-Branstetter R, Holinka LG, Sanford B, Carlson J, Lu Z, Borca MV.

Virology. 2014 Jul;460-461:173-9. doi: 10.1016/j.virol.2014.05.008.

Items per page

Supplemental Content

Support Center