Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 556

1.

Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.

Ferreri F, Ponzo D, Hukkanen T, Mervaala E, Könönen M, Pasqualetti P, Vecchio F, Rossini PM, Määttä S.

J Neurophysiol. 2012 Jul;108(1):314-23. doi: 10.1152/jn.00796.2011.

2.

Interactions between short latency afferent inhibition and long interval intracortical inhibition.

Udupa K, Ni Z, Gunraj C, Chen R.

Exp Brain Res. 2009 Nov;199(2):177-83. doi: 10.1007/s00221-009-1997-9.

PMID:
19730839
3.

Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study.

Rogasch NC, Daskalakis ZJ, Fitzgerald PB.

J Neurophysiol. 2013 Jan;109(1):89-98. doi: 10.1152/jn.00762.2012.

4.

Electrophysiological correlates of short-latency afferent inhibition: a combined EEG and TMS study.

Bikmullina R, Kicić D, Carlson S, Nikulin VV.

Exp Brain Res. 2009 Apr;194(4):517-26. doi: 10.1007/s00221-009-1723-7.

PMID:
19241068
5.

Paired-pulse afferent modulation of TMS responses reveals a selective decrease in short latency afferent inhibition with age.

Young-Bernier M, Davidson PS, Tremblay F.

Neurobiol Aging. 2012 Apr;33(4):835.e1-11. doi: 10.1016/j.neurobiolaging.2011.08.012.

PMID:
21958964
6.

Sensory afferent inhibition within and between limbs in humans.

Bikmullina R, Bäumer T, Zittel S, Münchau A.

Clin Neurophysiol. 2009 Mar;120(3):610-8. doi: 10.1016/j.clinph.2008.12.003.

PMID:
19136299
7.

Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study.

Bonato C, Miniussi C, Rossini PM.

Clin Neurophysiol. 2006 Aug;117(8):1699-707.

PMID:
16797232
8.

EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations.

Mäki H, Ilmoniemi RJ.

Clin Neurophysiol. 2010 Apr;121(4):492-501. doi: 10.1016/j.clinph.2009.11.078.

PMID:
20093074
9.

A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.

Noda Y, Cash RF, Zomorrodi R, Dominguez LG, Farzan F, Rajji TK, Barr MS, Chen R, Daskalakis ZJ, Blumberger DM.

J Neurophysiol. 2016 Sep 1;116(3):938-48. doi: 10.1152/jn.00260.2016.

PMID:
27226450
10.

Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans.

Quartarone A, Rizzo V, Bagnato S, Morgante F, Sant'Angelo A, Girlanda P, Siebner HR.

J Physiol. 2006 Sep 1;575(Pt 2):657-70.

11.

Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG-TMS study.

Ferreri F, Vecchio F, Ponzo D, Pasqualetti P, Rossini PM.

Hum Brain Mapp. 2014 May;35(5):1969-80. doi: 10.1002/hbm.22306.

PMID:
23868714
12.

Interactions between short-interval intracortical inhibition and short-latency afferent inhibition in human motor cortex.

Alle H, Heidegger T, Kriváneková L, Ziemann U.

J Physiol. 2009 Nov 1;587(Pt 21):5163-76. doi: 10.1113/jphysiol.2009.179820.

13.

Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation.

Sato D, Yamashiro K, Yoshida T, Onishi H, Shimoyama Y, Maruyama A.

Clin Neurophysiol. 2013 Sep;124(9):1846-52. doi: 10.1016/j.clinph.2013.04.008.

PMID:
23688919
14.

Loss of short-latency afferent inhibition and emergence of afferent facilitation following neuromuscular electrical stimulation.

Mang CS, Bergquist AJ, Roshko SM, Collins DF.

Neurosci Lett. 2012 Oct 31;529(1):80-5. doi: 10.1016/j.neulet.2012.08.072.

PMID:
22985510
15.

Increased short latency afferent inhibition after anodal transcranial direct current stimulation.

Scelzo E, Giannicola G, Rosa M, Ciocca M, Ardolino G, Cogiamanian F, Ferrucci R, Fumagalli M, Mameli F, Barbieri S, Priori A.

Neurosci Lett. 2011 Jul 8;498(2):167-70. doi: 10.1016/j.neulet.2011.05.007.

PMID:
21600266
16.

Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study.

Helfrich C, Pierau SS, Freitag CM, Roeper J, Ziemann U, Bender S.

PLoS One. 2012;7(11):e50073. doi: 10.1371/journal.pone.0050073.

17.

Intracortical inhibitory circuits and sensory input: a study with transcranial magnetic stimulation in humans.

Trompetto C, Buccolieri A, Abbruzzese G.

Neurosci Lett. 2001 Jan 5;297(1):17-20.

PMID:
11114474
18.

Normal cortical excitability in Myoclonus-Dystonia--a TMS study.

van der Salm SM, van Rootselaar AF, Foncke EM, Koelman JH, Bour LJ, Bhatia KP, Rothwell JC, Tijssen MA.

Exp Neurol. 2009 Apr;216(2):300-5. doi: 10.1016/j.expneurol.2008.12.001.

PMID:
19118553
19.

Cortical hypoexcitability in chronic smokers? A transcranial magnetic stimulation study.

Lang N, Hasan A, Sueske E, Paulus W, Nitsche MA.

Neuropsychopharmacology. 2008 Sep;33(10):2517-23.

20.

Corticospinal excitability in human subjects during nonrapid eye movement sleep: single and paired-pulse transcranial magnetic stimulation study.

Avesani M, Formaggio E, Fuggetta G, Fiaschi A, Manganotti P.

Exp Brain Res. 2008 May;187(1):17-23. doi: 10.1007/s00221-008-1274-3.

PMID:
18231786
Items per page

Supplemental Content

Support Center