Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Crystal structure of a membrane-embedded H+-translocating pyrophosphatase.

Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ.

Nature. 2012 Mar 28;484(7394):399-403. doi: 10.1038/nature10963.

PMID:
22456709
2.

Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase.

Yang SJ, Jiang SS, Hsiao YY, Van RC, Pan YJ, Pan RL.

Biochim Biophys Acta. 2004 Jun 7;1656(2-3):88-95.

3.
4.

Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum.

Malinen AM, Belogurov GA, Salminen M, Baykov AA, Lahti R.

J Biol Chem. 2004 Jun 25;279(26):26811-6.

5.

Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase.

Hsu SH, Lo YY, Liu TH, Pan YJ, Huang YT, Sun YJ, Hung CC, Tseng FG, Yang CW, Pan RL.

J Biol Chem. 2015 Jan 9;290(2):1197-209. doi: 10.1074/jbc.M114.568139.

6.

Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings.

Kuo SY, Chien LF, Hsiao YY, Van Ru C, Yan KH, Liu PF, Mao SJ, Pan RL.

J Plant Physiol. 2005 Feb;162(2):129-38.

PMID:
15779823
7.

Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+.

Luoto HH, Baykov AA, Lahti R, Malinen AM.

Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1255-60. doi: 10.1073/pnas.1217816110.

8.

Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase.

Lee CH, Chen YW, Huang YT, Pan YJ, Lee CH, Lin SM, Huang LK, Lo YY, Huang YF, Hsu YD, Yen SC, Hwang JK, Pan RL.

J Membr Biol. 2013 Dec;246(12):959-66.

PMID:
24121627
9.

Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure.

Asaoka M, Segami S, Maeshima M.

J Biochem. 2014 Dec;156(6):333-44. doi: 10.1093/jb/mvu046.

PMID:
25070903
10.

The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique.

Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL.

FEBS J. 2009 Aug;276(16):4381-94. doi: 10.1111/j.1742-4658.2009.07146.x.

11.

Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.

Huang YT, Liu TH, Lin SM, Chen YW, Pan YJ, Lee CH, Sun YJ, Tseng FG, Pan RL.

J Biol Chem. 2013 Jul 5;288(27):19312-20. doi: 10.1074/jbc.M113.469353.

12.

Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase.

Van RC, Pan YJ, Hsu SH, Huang YT, Hsiao YY, Pan RL.

Biochim Biophys Acta. 2005 Aug 15;1709(1):84-94.

13.

Involvement of tyrosine residue in the inhibition of plant vacuolar H(+)-pyrophosphatase by tetranitromethane.

Yang SJ, Jiang SS, Tzeng CM, Kuo SY, Hung SH, Pan RL.

Biochim Biophys Acta. 1996 May 2;1294(1):89-97.

PMID:
8639720
14.

Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.

Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL.

Biochim Biophys Acta. 2004 Feb 15;1608(2-3):190-9.

15.

Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase.

Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH, Lee CH, Liu PF, Chang WC, Wang YK, Chien LF, Pan RL.

Biochim Biophys Acta. 2007 Jul;1767(7):965-73.

16.

Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure.

Yang SJ, Ko SJ, Tsai YR, Jiang SS, Kuo SY, Hung SH, Pan RL.

Biochem J. 1998 Apr 15;331 ( Pt 2):395-402.

17.

Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases.

Perez-Castineira JR, Lopez-Marques RL, Villalba JM, Losada M, Serrano A.

Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15914-9.

18.

Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase.

Lee CH, Pan YJ, Huang YT, Liu TH, Hsu SH, Lee CH, Chen YW, Lin SM, Huang LK, Pan RL.

J Biol Chem. 2011 Apr 8;286(14):11970-6. doi: 10.1074/jbc.M110.190215.

19.

Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations.

Luoto HH, Nordbo E, Baykov AA, Lahti R, Malinen AM.

J Biol Chem. 2013 Dec 6;288(49):35489-99. doi: 10.1074/jbc.M113.510909.

20.

Supplemental Content

Support Center