Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30.

Carrillo E, Ben-Ari G, Wildenhain J, Tyers M, Grammentz D, Lee TA.

Mol Biol Cell. 2012 May;23(10):1928-42. doi: 10.1091/mbc.E11-06-0532. Epub 2012 Mar 21.

2.

A dominant suppressor mutation of the met30 cell cycle defect suggests regulation of the Saccharomyces cerevisiae Met4-Cbf1 transcription complex by Met32.

Su NY, Ouni I, Papagiannis CV, Kaiser P.

J Biol Chem. 2008 Apr 25;283(17):11615-24. doi: 10.1074/jbc.M708230200. Epub 2008 Feb 28.

3.

Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor.

Menant A, Baudouin-Cornu P, Peyraud C, Tyers M, Thomas D.

J Biol Chem. 2006 Apr 28;281(17):11744-54. Epub 2006 Feb 23.

4.

Dissection of combinatorial control by the Met4 transcriptional complex.

Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M.

Mol Biol Cell. 2010 Feb 1;21(3):456-69. doi: 10.1091/mbc.E09-05-0420. Epub 2009 Nov 25.

5.

Transcriptional plasticity through differential assembly of a multiprotein activation complex.

Cormier L, Barbey R, Kuras L.

Nucleic Acids Res. 2010 Aug;38(15):4998-5014. doi: 10.1093/nar/gkq257. Epub 2010 Apr 14.

6.

Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment.

Kuras L, Rouillon A, Lee T, Barbey R, Tyers M, Thomas D.

Mol Cell. 2002 Jul;10(1):69-80.

8.

A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors.

Ouni I, Flick K, Kaiser P.

Mol Cell. 2010 Dec 22;40(6):954-64. doi: 10.1016/j.molcel.2010.11.018.

10.

Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.

Wu CY, Roje S, Sandoval FJ, Bird AJ, Winge DR, Eide DJ.

J Biol Chem. 2009 Oct 2;284(40):27544-56. doi: 10.1074/jbc.M109.042036. Epub 2009 Aug 5.

11.

Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway.

Petti AA, McIsaac RS, Ho-Shing O, Bussemaker HJ, Botstein D.

Mol Biol Cell. 2012 Aug;23(15):3008-24. doi: 10.1091/mbc.E12-03-0233. Epub 2012 Jun 13. Erratum in: Mol Biol Cell. 2014 Apr;25(8):1409.

13.

Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30 )complex.

Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D.

EMBO J. 2000 Jan 17;19(2):282-94.

14.
15.

Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway.

McIsaac RS, Petti AA, Bussemaker HJ, Botstein D.

Mol Biol Cell. 2012 Aug;23(15):2993-3007. doi: 10.1091/mbc.E12-03-0232. Epub 2012 Jun 13.

16.

Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain.

Flick K, Ouni I, Wohlschlegel JA, Capati C, McDonald WH, Yates JR, Kaiser P.

Nat Cell Biol. 2004 Jul;6(7):634-41. Epub 2004 Jun 20.

PMID:
15208638
17.

Substrate-mediated remodeling of methionine transport by multiple ubiquitin-dependent mechanisms in yeast cells.

Menant A, Barbey R, Thomas D.

EMBO J. 2006 Oct 4;25(19):4436-47. Epub 2006 Sep 14.

18.

Multiple inputs control sulfur-containing amino acid synthesis in Saccharomyces cerevisiae.

Sadhu MJ, Moresco JJ, Zimmer AD, Yates JR 3rd, Rine J.

Mol Biol Cell. 2014 May;25(10):1653-65. doi: 10.1091/mbc.E13-12-0755. Epub 2014 Mar 19.

20.

Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium.

Barbey R, Baudouin-Cornu P, Lee TA, Rouillon A, Zarzov P, Tyers M, Thomas D.

EMBO J. 2005 Feb 9;24(3):521-32. Epub 2005 Jan 20.

Supplemental Content

Support Center