Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 282

1.

Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends.

Gevaerts VS, Furlan A, Wienk MM, Turbiez M, Janssen RA.

Adv Mater. 2012 Apr 24;24(16):2130-4. doi: 10.1002/adma.201104939. Epub 2012 Mar 21.

PMID:
22438114
2.

Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells.

Clarke TM, Ballantyne A, Shoaee S, Soon YW, Duffy W, Heeney M, McCulloch I, Nelson J, Durrant JR.

Adv Mater. 2010 Dec 7;22(46):5287-91. doi: 10.1002/adma.201002357. No abstract available.

PMID:
20827687
3.

On realizing higher efficiency polymer solar cells using a textured substrate platform.

Nalwa KS, Park JM, Ho KM, Chaudhary S.

Adv Mater. 2011 Jan 4;23(1):112-6. doi: 10.1002/adma.201002898. No abstract available.

PMID:
21069887
4.

Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films.

Li W, Hendriks KH, Roelofs WS, Kim Y, Wienk MM, Janssen RA.

Adv Mater. 2013 Jun 18;25(23):3182-6. doi: 10.1002/adma.201300017. Epub 2013 Mar 6.

PMID:
23463622
5.

Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends.

Liu F, Gu Y, Wang C, Zhao W, Chen D, Briseno AL, Russell TP.

Adv Mater. 2012 Aug 2;24(29):3947-51. doi: 10.1002/adma.201200902. Epub 2012 Jun 12.

PMID:
22689152
6.

Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance.

Liao SH, Jhuo HJ, Cheng YS, Chen SA.

Adv Mater. 2013 Sep 14;25(34):4766-71. doi: 10.1002/adma.201301476. Epub 2013 Aug 13.

PMID:
23939927
7.

Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene.

Miller NC, Sweetnam S, Hoke ET, Gysel R, Miller CE, Bartelt JA, Xie X, Toney MF, McGehee MD.

Nano Lett. 2012 Mar 14;12(3):1566-70. doi: 10.1021/nl204421p. Epub 2012 Mar 5.

PMID:
22375600
8.

Solution-processed fullerene-based organic Schottky junction devices for large-open-circuit-voltage organic solar cells.

Yang B, Guo F, Yuan Y, Xiao Z, Lu Y, Dong Q, Huang J.

Adv Mater. 2013 Jan 25;25(4):572-7. doi: 10.1002/adma.201203080. Epub 2012 Nov 2.

PMID:
23125058
9.

Nanostructured, active organic-metal junctions for highly efficient charge generation and extraction in polymer-fullerene solar cells.

Pandey AK, Aljada M, Velusamy M, Burn PL, Meredith P.

Adv Mater. 2012 Feb 21;24(8):1055-61. doi: 10.1002/adma.201103896. Epub 2012 Jan 24.

PMID:
22271224
10.

6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization.

Zhao G, He Y, Li Y.

Adv Mater. 2010 Oct 15;22(39):4355-8. doi: 10.1002/adma.201001339.

PMID:
20589774
11.

The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.

Heintges GH, van Franeker JJ, Wienk MM, Janssen RA.

Chem Commun (Camb). 2016 Jan 4;52(1):92-5. doi: 10.1039/c5cc07185b.

PMID:
26497230
12.

Coating on a cold substrate largely enhances power conversion efficiency of the bulk heterojunction solar cell.

Oh JY, Lee TI, Myoung JM, Jeong U, Baik HK.

Macromol Rapid Commun. 2011 Jul 15;32(14):1066-71. doi: 10.1002/marc.201100132. Epub 2011 May 3.

PMID:
21542045
13.

Poly(3-octylthiophene)/fullerene heterojunction solar cell incorporating carbon nanotubes.

Kalita G, Adhikari S, Aryal HR, Wakita K, Umeno M.

J Nanosci Nanotechnol. 2010 Jun;10(6):3844-8.

PMID:
20355377
14.

Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

Tsang SW, Chen S, So F.

Adv Mater. 2013 May 7;25(17):2434-9. doi: 10.1002/adma.201204495. Epub 2013 Feb 18.

PMID:
23418056
15.

Highly crystalline and low bandgap donor polymers for efficient polymer solar cells.

Liu J, Choi H, Kim JY, Bailey C, Durstock M, Dai L.

Adv Mater. 2012 Jan 24;24(4):538-42. doi: 10.1002/adma.201103623. Epub 2011 Dec 23.

PMID:
22213125
16.

P3HT:PCBM, best seller in polymer photovoltaic research.

Dang MT, Hirsch L, Wantz G.

Adv Mater. 2011 Aug 16;23(31):3597-3602.

PMID:
21936074
17.

Modifications in morphology resulting from nanoimprinting bulk heterojunction blends for light trapping organic solar cell designs.

Tumbleston JR, Gadisa A, Liu Y, Collins BA, Samulski ET, Lopez R, Ade H.

ACS Appl Mater Interfaces. 2013 Aug 28;5(16):8225-30. doi: 10.1021/am402363r. Epub 2013 Aug 19.

PMID:
23910827
18.

A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency.

Zhang X, Lu Z, Ye L, Zhan C, Hou J, Zhang S, Jiang B, Zhao Y, Huang J, Zhang S, Liu Y, Shi Q, Liu Y, Yao J.

Adv Mater. 2013 Oct 25;25(40):5791-7. doi: 10.1002/adma.201300897. Epub 2013 Aug 7.

PMID:
23925952
19.

Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

Guerrero A, Loser S, Garcia-Belmonte G, Bruns CJ, Smith J, Miyauchi H, Stupp SI, Bisquert J, Marks TJ.

Phys Chem Chem Phys. 2013 Oct 21;15(39):16456-62. doi: 10.1039/c3cp52363b. Epub 2013 Aug 15.

PMID:
23945610
20.

Enhanced efficiency of single and tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer by utilizing combined ZnO/polyelectrolyte electron-transport layers.

Jo J, Pouliot JR, Wynands D, Collins SD, Kim JY, Nguyen TL, Woo HY, Sun Y, Leclerc M, Heeger AJ.

Adv Mater. 2013 Sep 14;25(34):4783-8. doi: 10.1002/adma.201301288. Epub 2013 Jul 12.

PMID:
23847037

Supplemental Content

Support Center