Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Transcription factor PIF4 controls the thermosensory activation of flowering.

Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA.

Nature. 2012 Mar 21;484(7393):242-245. doi: 10.1038/nature10928.

2.

The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.

Thines BC, Youn Y, Duarte MI, Harmon FG.

J Exp Bot. 2014 Mar;65(4):1141-51. doi: 10.1093/jxb/ert487.

3.

Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days.

Fernández V, Takahashi Y, Le Gourrierec J, Coupland G.

Plant J. 2016 Jun;86(5):426-40. doi: 10.1111/tpj.13183.

4.

Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.

Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T.

Plant Cell Physiol. 2011 Aug;52(8):1315-29. doi: 10.1093/pcp/pcr076. Epub 2011 Jun 11.

PMID:
21666227
5.

Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana.

Galvão VC, Collani S, Horrer D, Schmid M.

Plant J. 2015 Dec;84(5):949-62. doi: 10.1111/tpj.13051. Epub 2015 Nov 11.

6.

The control of flowering in time and space.

Jaeger KE, Graf A, Wigge PA.

J Exp Bot. 2006;57(13):3415-8. Epub 2006 Sep 27. Review.

PMID:
17005922
7.

Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.

Filo J, Wu A, Eliason E, Richardson T, Thines BC, Harmon FG.

Plant Signal Behav. 2015;10(3):e992707. doi: 10.4161/15592324.2014.992707.

8.

Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.

Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, Mizuno T.

Plant Signal Behav. 2013 Mar;8(3):e23390. doi: 10.4161/psb.23390. Epub 2013 Jan 8.

9.

Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.

Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ.

Mol Syst Biol. 2015 Jan 19;11(1):776. doi: 10.15252/msb.20145766.

10.

A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.

Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T.

Plant Cell Physiol. 2012 Nov;53(11):1965-73. doi: 10.1093/pcp/pcs141. Epub 2012 Oct 4. Erratum in: Plant Cell Physiol. 2013 Apr;54(4):643. Nomoto, Yuichi [corrected to Nomoto, Yuji].

PMID:
23037004
11.

Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene.

He Y.

Nucleus. 2015;6(3):179-82. doi: 10.1080/19491034.2015.1038000. Epub 2015 May 7.

12.

Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering.

Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T.

Plant Cell Physiol. 2008 Nov;49(11):1645-58. doi: 10.1093/pcp/pcn154. Epub 2008 Oct 11. Erratum in: Plant Cell Physiol. 2008 Dec;49(12):1922.

PMID:
18849573
13.

High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4.

Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA.

Curr Biol. 2009 Mar 10;19(5):408-13. doi: 10.1016/j.cub.2009.01.046. Epub 2009 Feb 26.

14.

[Expression and functional analysis of SUA41gene in Arabidopsis thaliana].

Huang GW, Han YZ, Fu YF.

Yi Chuan. 2013 Jan;35(1):93-100. Chinese.

PMID:
23357270
15.

CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis.

Song YH, Lee I, Lee SY, Imaizumi T, Hong JC.

Plant J. 2012 Jan;69(2):332-42. doi: 10.1111/j.1365-313X.2011.04793.x. Epub 2011 Nov 18.

16.

The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering.

Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O.

Science. 2005 Sep 9;309(5741):1694-6. Epub 2005 Aug 11. Retraction in: Böhlenius H, Eriksson S, Parcy F, Nilsson O. Science. 2007 Apr 20;316(5823):367.

17.

NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis.

Sharma N, Xin R, Kim DH, Sung S, Lange T, Huq E.

Development. 2016 Feb 15;143(4):682-90. doi: 10.1242/dev.128595. Epub 2016 Jan 12.

18.

ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize.

Lazakis CM, Coneva V, Colasanti J.

J Exp Bot. 2011 Oct;62(14):4833-42. doi: 10.1093/jxb/err129. Epub 2011 Jul 5.

19.

Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature.

Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM.

Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5. doi: 10.1073/pnas.1110682108. Epub 2011 Nov 28.

20.

FE, a phloem-specific Myb-related protein, promotes flowering through transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1.

Abe M, Kaya H, Watanabe-Taneda A, Shibuta M, Yamaguchi A, Sakamoto T, Kurata T, Ausín I, Araki T, Alonso-Blanco C.

Plant J. 2015 Sep;83(6):1059-68. doi: 10.1111/tpj.12951.

Supplemental Content

Support Center