Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach.

Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Lam CM, Schomburg D, Prieto MA, Martins dos Santos VA.

Microb Cell Fact. 2012 Mar 20;11:34. doi: 10.1186/1475-2859-11-34.

2.

Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.

Beckers V, Poblete-Castro I, Tomasch J, Wittmann C.

Microb Cell Fact. 2016 May 3;15:73. doi: 10.1186/s12934-016-0470-2.

3.
4.

The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.

de Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA.

Environ Microbiol. 2010 Jan;12(1):207-21. doi: 10.1111/j.1462-2920.2009.02061.x. Epub 2009 Sep 29.

PMID:
19788655
5.

Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids.

Fu J, Sharma P, Spicer V, Krokhin OV, Zhang X, Fristensky B, Cicek N, Sparling R, Levin DB.

PLoS One. 2015 Nov 6;10(11):e0142322. doi: 10.1371/journal.pone.0142322. eCollection 2015.

6.

The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions.

La Rosa R, de la Peña F, Prieto MA, Rojo F.

Environ Microbiol. 2014 Jan;16(1):278-90. doi: 10.1111/1462-2920.12303. Epub 2013 Nov 6.

PMID:
24118893
7.

The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida.

Escapa IF, García JL, Bühler B, Blank LM, Prieto MA.

Environ Microbiol. 2012 Apr;14(4):1049-63. doi: 10.1111/j.1462-2920.2011.02684.x. Epub 2012 Jan 9.

PMID:
22225632
8.

Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46.

Sharma PK, Fu J, Cicek N, Sparling R, Levin DB.

Can J Microbiol. 2012 Aug;58(8):982-9. doi: 10.1139/w2012-074. Epub 2012 Jul 18.

PMID:
22804681
9.

Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions.

Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE.

Microbiology. 2009 Oct;155(Pt 10):3348-61. doi: 10.1099/mic.0.031153-0. Epub 2009 Jul 16.

PMID:
19608612
10.

Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams.

Fu J, Sharma U, Sparling R, Cicek N, Levin DB.

Can J Microbiol. 2014 Jul;60(7):461-8. doi: 10.1139/cjm-2014-0108. Epub 2014 Jun 5.

PMID:
24983445
11.

Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509.

Shahid S, Mosrati R, Ledauphin J, Amiel C, Fontaine P, Gaillard JL, Corroler D.

J Biosci Bioeng. 2013 Sep;116(3):302-8. doi: 10.1016/j.jbiosc.2013.02.017. Epub 2013 Mar 30.

PMID:
23548274
12.

Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440.

Sun Z, Ramsay JA, Guay M, Ramsay BA.

Appl Microbiol Biotechnol. 2007 Feb;74(1):69-77. Epub 2006 Oct 25.

PMID:
17063330
13.

Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures.

Fontaine P, Mosrati R, Corroler D.

Int J Biol Macromol. 2017 May;98:430-435. doi: 10.1016/j.ijbiomac.2017.01.115. Epub 2017 Feb 5.

PMID:
28174083
14.

Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442.

Cai L, Yuan MQ, Liu F, Jian J, Chen GQ.

Bioresour Technol. 2009 Apr;100(7):2265-70. doi: 10.1016/j.biortech.2008.11.020. Epub 2008 Dec 21.

PMID:
19103481
15.

Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida.

Borrero-de Acuña JM, Bielecka A, Häussler S, Schobert M, Jahn M, Wittmann C, Jahn D, Poblete-Castro I.

Microb Cell Fact. 2014 Jun 19;13:88. doi: 10.1186/1475-2859-13-88.

16.

[Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha].

Yan Q, Du GC, Chen J.

Sheng Wu Gong Cheng Xue Bao. 2003 Jul;19(4):497-501. Chinese.

PMID:
15969073
17.

Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440.

Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q.

BMC Biotechnol. 2012 Aug 22;12:53. doi: 10.1186/1472-6750-12-53.

18.

High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply.

Davis R, Duane G, Kenny ST, Cerrone F, Guzik MW, Babu RP, Casey E, O'Connor KE.

Biotechnol Bioeng. 2015 Apr;112(4):725-33. doi: 10.1002/bit.25474. Epub 2014 Nov 19.

PMID:
25311981
19.

Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.

Valentino F, Karabegovic L, Majone M, Morgan-Sagastume F, Werker A.

Water Res. 2015 Jun 15;77:49-63. doi: 10.1016/j.watres.2015.03.016. Epub 2015 Mar 24.

PMID:
25846983
20.

Supplemental Content

Support Center