Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex.

Caram JR, Lewis NH, Fidler AF, Engel GS.

J Chem Phys. 2012 Mar 14;136(10):104505. doi: 10.1063/1.3690498.

PMID:
22423846
2.
4.

Peak shape analysis of diagonal and off-diagonal features in the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex.

Hayes D, Engel GS.

Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3692-708. doi: 10.1098/rsta.2011.0201.

5.

Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.

Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, Blankenship RE, Fleming GR.

Nature. 2007 Apr 12;446(7137):782-6.

PMID:
17429397
6.

Origin of long-lived coherences in light-harvesting complexes.

Christensson N, Kauffmann HF, Pullerits T, Mančal T.

J Phys Chem B. 2012 Jun 28;116(25):7449-54. doi: 10.1021/jp304649c. Epub 2012 Jun 14.

7.
8.

Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex.

Shim S, Rebentrost P, Valleau S, Aspuru-Guzik A.

Biophys J. 2012 Feb 8;102(3):649-60. doi: 10.1016/j.bpj.2011.12.021. Epub 2012 Feb 7.

10.
11.

Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.

Fidler AF, Harel E, Long PD, Engel GS.

J Phys Chem A. 2012 Jan 12;116(1):282-9. doi: 10.1021/jp2088109. Epub 2011 Dec 22.

PMID:
22191993
12.

Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy.

Read EL, Schlau-Cohen GS, Engel GS, Wen J, Blankenship RE, Fleming GR.

Biophys J. 2008 Jul;95(2):847-56. doi: 10.1529/biophysj.107.128199. Epub 2008 Mar 28.

13.

Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.

Chin AW, Huelga SF, Plenio MB.

Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3638-57. doi: 10.1098/rsta.2011.0224.

14.

Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons.

Renger T, Klinger A, Steinecker F, Schmidt am Busch M, Numata J, Müh F.

J Phys Chem B. 2012 Dec 20;116(50):14565-80. doi: 10.1021/jp3094935. Epub 2012 Dec 10.

15.

Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study.

Bai S, Song K, Shi Q.

J Phys Chem Lett. 2015 May 21;6(10):1954-60. doi: 10.1021/acs.jpclett.5b00690. Epub 2015 May 12.

PMID:
26263276
16.

Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method.

Chen L, Zheng R, Jing Y, Shi Q.

J Chem Phys. 2011 May 21;134(19):194508. doi: 10.1063/1.3589982.

PMID:
21599074
17.

Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.

Pelzer KM, Griffin GB, Gray SK, Engel GS.

J Chem Phys. 2012 Apr 28;136(16):164508. doi: 10.1063/1.4704591.

PMID:
22559497
18.

Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.

Dawlaty JM, Ishizaki A, De AK, Fleming GR.

Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3672-91. doi: 10.1098/rsta.2011.0207.

19.

Constrained geometric dynamics of the Fenna-Matthews-Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer.

Fokas AS, Cole DJ, Chin AW.

Photosynth Res. 2014 Dec;122(3):275-92. doi: 10.1007/s11120-014-0027-3. Epub 2014 Jul 18.

PMID:
25034014
20.

Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach.

Saer RG, Stadnytskyi V, Magdaong NC, Goodson C, Savikhin S, Blankenship RE.

Biochim Biophys Acta. 2017 Apr;1858(4):288-296. doi: 10.1016/j.bbabio.2017.01.011. Epub 2017 Jan 31.

Supplemental Content

Support Center