Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

Early induction of CCL7 downstream of TLR9 signaling promotes the development of robust immunity to cryptococcal infection.

Qiu Y, Zeltzer S, Zhang Y, Wang F, Chen GH, Dayrit J, Murdock BJ, Bhan U, Toews GB, Osterholzer JJ, Standiford TJ, Olszewski MA.

J Immunol. 2012 Apr 15;188(8):3940-8. doi: 10.4049/jimmunol.1103053. Epub 2012 Mar 14.

2.

TLR9 signaling is required for generation of the adaptive immune protection in Cryptococcus neoformans-infected lungs.

Zhang Y, Wang F, Bhan U, Huffnagle GB, Toews GB, Standiford TJ, Olszewski MA.

Am J Pathol. 2010 Aug;177(2):754-65. doi: 10.2353/ajpath.2010.091104. Epub 2010 Jun 25.

3.

Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production.

Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ.

Infect Immun. 2014 Mar;82(3):937-48. doi: 10.1128/IAI.01477-13. Epub 2013 Dec 9.

4.

Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection.

Xu J, Flaczyk A, Neal LM, Fa Z, Eastman AJ, Malachowski AN, Cheng D, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA.

J Immunol. 2017 May 1;198(9):3548-3557. doi: 10.4049/jimmunol.1700057. Epub 2017 Mar 15.

5.

Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection.

Xu J, Eastman AJ, Flaczyk A, Neal LM, Zhao G, Carolan J, Malachowski AN, Stolberg VR, Yosri M, Chensue SW, Curtis JL, Osterholzer JJ, Olszewski MA.

MBio. 2016 Jul 12;7(4). pii: e00510-16. doi: 10.1128/mBio.00510-16. Erratum in: MBio. 2018 May 29;9(3):.

6.

Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway.

Nakamura K, Miyazato A, Xiao G, Hatta M, Inden K, Aoyagi T, Shiratori K, Takeda K, Akira S, Saijo S, Iwakura Y, Adachi Y, Ohno N, Suzuki K, Fujita J, Kaku M, Kawakami K.

J Immunol. 2008 Mar 15;180(6):4067-74.

7.

IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection.

Grahnert A, Richter T, Piehler D, Eschke M, Schulze B, Müller U, Protschka M, Köhler G, Sabat R, Brombacher F, Alber G.

PLoS One. 2014 Jan 27;9(1):e87341. doi: 10.1371/journal.pone.0087341. eCollection 2014.

8.

Generation of antifungal effector CD8+ T cells in the absence of CD4+ T cells during Cryptococcus neoformans infection.

Lindell DM, Moore TA, McDonald RA, Toews GB, Huffnagle GB.

J Immunol. 2005 Jun 15;174(12):7920-8.

9.

T Cell-Restricted Notch Signaling Contributes to Pulmonary Th1 and Th2 Immunity during Cryptococcus neoformans Infection.

Neal LM, Qiu Y, Chung J, Xing E, Cho W, Malachowski AN, Sandy-Sloat AR, Osterholzer JJ, Maillard I, Olszewski MA.

J Immunol. 2017 Jul 15;199(2):643-655. doi: 10.4049/jimmunol.1601715. Epub 2017 Jun 14.

10.

Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection.

Murdock BJ, Teitz-Tennenbaum S, Chen GH, Dils AJ, Malachowski AN, Curtis JL, Olszewski MA, Osterholzer JJ.

J Immunol. 2014 Oct 15;193(8):4107-16. doi: 10.4049/jimmunol.1400650. Epub 2014 Sep 15.

11.

CD4+ T Cells Orchestrate Lethal Immune Pathology despite Fungal Clearance during Cryptococcus neoformans Meningoencephalitis.

Neal LM, Xing E, Xu J, Kolbe JL, Osterholzer JJ, Segal BM, Williamson PR, Olszewski MA.

MBio. 2017 Nov 21;8(6). pii: e01415-17. doi: 10.1128/mBio.01415-17.

12.

Impaired innate immunity in Tlr4(-/-) mice but preserved CD8+ T cell responses against Trypanosoma cruzi in Tlr4-, Tlr2-, Tlr9- or Myd88-deficient mice.

Oliveira AC, de Alencar BC, Tzelepis F, Klezewsky W, da Silva RN, Neves FS, Cavalcanti GS, Boscardin S, Nunes MP, Santiago MF, Nóbrega A, Rodrigues MM, Bellio M.

PLoS Pathog. 2010 Apr 29;6(4):e1000870. doi: 10.1371/journal.ppat.1000870.

13.

Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection.

Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, Toews GB.

Am J Pathol. 2011 Jan;178(1):198-211. doi: 10.1016/j.ajpath.2010.11.006. Epub 2010 Dec 23.

14.
15.
16.
17.

Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes.

Osterholzer JJ, Chen GH, Olszewski MA, Curtis JL, Huffnagle GB, Toews GB.

J Immunol. 2009 Dec 15;183(12):8044-53. doi: 10.4049/jimmunol.0902823.

18.

Contribution of the myeloperoxidase-dependent oxidative system to host defence against Cryptococcus neoformans.

Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Ishida-Okawara A, Suzuki K, Maeda N, Koyama H.

J Med Microbiol. 2006 Sep;55(Pt 9):1291-9.

PMID:
16914663
19.

Dual roles of CD40 on microbial containment and the development of immunopathology in response to persistent fungal infection in the lung.

Chen GH, Osterholzer JJ, Choe MY, McDonald RA, Olszewski MA, Huffnagle GB, Toews GB.

Am J Pathol. 2010 Nov;177(5):2459-71. doi: 10.2353/ajpath.2010.100141. Epub 2010 Sep 23.

20.

The role of macrophage inflammatory protein-1 alpha/CCL3 in regulation of T cell-mediated immunity to Cryptococcus neoformans infection.

Olszewski MA, Huffnagle GB, McDonald RA, Lindell DM, Moore BB, Cook DN, Toews GB.

J Immunol. 2000 Dec 1;165(11):6429-36.

Supplemental Content

Support Center