Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes.

Zahaf O, Blanchet S, de Zélicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichanté JL, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M.

Mol Plant. 2012 Sep;5(5):1068-81. doi: 10.1093/mp/sss009. Epub 2012 Mar 14.

2.

Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.

de Zélicourt A, Diet A, Marion J, Laffont C, Ariel F, Moison M, Zahaf O, Crespi M, Gruber V, Frugier F.

Plant J. 2012 Apr;70(2):220-30. doi: 10.1111/j.1365-313X.2011.04859.x. Epub 2012 Jan 10.

3.

Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes.

de Lorenzo L, Merchan F, Blanchet S, Megías M, Frugier F, Crespi M, Sousa C.

Plant Physiol. 2007 Dec;145(4):1521-32. Epub 2007 Oct 19.

4.

Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula.

Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M.

Plant J. 2007 Jul;51(1):1-17. Epub 2007 May 3.

5.
6.

Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula.

Long RC, Li MN, Kang JM, Zhang TJ, Sun Y, Yang QC.

Physiol Plant. 2015 May;154(1):13-27. doi: 10.1111/ppl.12266. Epub 2014 Oct 7.

PMID:
25156209
7.

Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula.

Gruber V, Blanchet S, Diet A, Zahaf O, Boualem A, Kakar K, Alunni B, Udvardi M, Frugier F, Crespi M.

Mol Genet Genomics. 2009 Jan;281(1):55-66. doi: 10.1007/s00438-008-0392-8. Epub 2008 Nov 6.

8.

Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108.

Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH.

BMC Plant Biol. 2014 May 6;14:122. doi: 10.1186/1471-2229-14-122.

9.

Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress.

Luo SS, Sun YN, Zhou X, Zhu T, Zhu LS, Arfan M, Zou LJ, Lin HH.

Plant Physiol Biochem. 2016 Dec;109:190-198. doi: 10.1016/j.plaphy.2016.09.019. Epub 2016 Oct 1.

PMID:
27721134
10.

A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress.

de Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi M.

Plant Cell. 2009 Feb;21(2):668-80. doi: 10.1105/tpc.108.059576. Epub 2009 Feb 24.

11.

Alternative oxidase 1 (Aox1) gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance.

Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Aouani ME, Polidoros AN.

J Plant Physiol. 2013 Jan 1;170(1):111-4. doi: 10.1016/j.jplph.2012.08.017. Epub 2012 Oct 15.

PMID:
23079242
12.

Population differentiation for germination and early seedling root growth traits under saline conditions in the annual legume Medicago truncatula (Fabaceae).

Cordeiro MA, Moriuchi KS, Fotinos TD, Miller KE, Nuzhdin SV, von Wettberg EJ, Cook DR.

Am J Bot. 2014 Mar;101(3):488-98. doi: 10.3732/ajb.1300285. Epub 2014 Mar 17.

13.

Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula.

Chandran D, Sharopova N, Ivashuta S, Gantt JS, Vandenbosch KA, Samac DA.

Planta. 2008 Jun;228(1):151-66. doi: 10.1007/s00425-008-0726-0. Epub 2008 Mar 20.

PMID:
18351384
14.

Unraveling the effect of arsenic on the model Medicago-Ensifer interaction: a transcriptomic meta-analysis.

Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E.

New Phytol. 2015 Jan;205(1):255-72. doi: 10.1111/nph.13009. Epub 2014 Sep 23.

15.

Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs.

Riely BK, He H, Venkateshwaran M, Sarma B, Schraiber J, Ané JM, Cook DR.

Plant J. 2011 Jan;65(2):230-43. doi: 10.1111/j.1365-313X.2010.04414.x.

16.

Lateral root formation and patterning in Medicago truncatula.

Herrbach V, Remblière C, Gough C, Bensmihen S.

J Plant Physiol. 2014 Feb 15;171(3-4):301-10. doi: 10.1016/j.jplph.2013.09.006. Epub 2013 Oct 20.

PMID:
24148318
17.

Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity.

Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN.

Physiol Plant. 2011 Mar;141(3):201-14. doi: 10.1111/j.1399-3054.2010.01433.x. Epub 2010 Dec 28.

PMID:
21114673
18.

Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula.

Castillejo MA, Maldonado AM, Dumas-Gaudot E, Fernández-Aparicio M, Susín R, Diego R, Jorrín JV.

BMC Genomics. 2009 Jul 3;10:294. doi: 10.1186/1471-2164-10-294.

19.

Physiological and molecular characterization of aluminum resistance in Medicago truncatula.

Chandran D, Sharopova N, VandenBosch KA, Garvin DF, Samac DA.

BMC Plant Biol. 2008 Aug 19;8:89. doi: 10.1186/1471-2229-8-89.

20.

Systemic regulation of sulfur homeostasis in Medicago truncatula.

Gao Y, Tian Q, Zhang WH.

Planta. 2014 Jan;239(1):79-96. doi: 10.1007/s00425-013-1958-1. Epub 2013 Sep 26.

PMID:
24068299

Supplemental Content

Support Center