Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells.

Tierney L, Linde J, Müller S, Brunke S, Molina JC, Hube B, Schöck U, Guthke R, Kuchler K.

Front Microbiol. 2012 Mar 12;3:85. doi: 10.3389/fmicb.2012.00085. eCollection 2012.

2.

Computational prediction of molecular pathogen-host interactions based on dual transcriptome data.

Schulze S, Henkel SG, Driesch D, Guthke R, Linde J.

Front Microbiol. 2015 Feb 6;6:65. doi: 10.3389/fmicb.2015.00065. eCollection 2015.

3.

Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells.

Linde J, Wilson D, Hube B, Guthke R.

BMC Syst Biol. 2010 Nov 4;4:148. doi: 10.1186/1752-0509-4-148.

4.

How to Predict Molecular Interactions between Species?

Schulze S, Schleicher J, Guthke R, Linde J.

Front Microbiol. 2016 Mar 31;7:442. doi: 10.3389/fmicb.2016.00442. eCollection 2016. Review.

5.

Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study.

Wang YC, Lin C, Chuang MT, Hsieh WP, Lan CY, Chuang YJ, Chen BS.

BMC Syst Biol. 2013 Aug 16;7:79. doi: 10.1186/1752-0509-7-79.

6.

Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach.

Linde J, Hortschansky P, Fazius E, Brakhage AA, Guthke R, Haas H.

BMC Syst Biol. 2012 Jan 19;6:6. doi: 10.1186/1752-0509-6-6.

7.

Genome-Wide Scale-Free Network Inference for Candida albicans.

Altwasser R, Linde J, Buyko E, Hahn U, Guthke R.

Front Microbiol. 2012 Feb 16;3:51. doi: 10.3389/fmicb.2012.00051. eCollection 2012.

8.

Integrated inference and evaluation of host-fungi interaction networks.

Remmele CW, Luther CH, Balkenhol J, Dandekar T, Müller T, Dittrich MT.

Front Microbiol. 2015 Aug 4;6:764. doi: 10.3389/fmicb.2015.00764. eCollection 2015.

9.

Identification of infection- and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-zebrafish infection model.

Kuo ZY, Chuang YJ, Chao CC, Liu FC, Lan CY, Chen BS.

J Innate Immun. 2013;5(2):137-52. doi: 10.1159/000347104. Epub 2013 Feb 13.

10.

Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells.

Ene IV, Cheng SC, Netea MG, Brown AJ.

Infect Immun. 2013 Jan;81(1):238-48. doi: 10.1128/IAI.01092-12. Epub 2012 Oct 31.

11.

Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance.

Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K.

Mol Microbiol. 2009 Jan;71(1):240-52. doi: 10.1111/j.1365-2958.2008.06528.x. Epub 2008 Nov 4.

12.

Candida albicans CUG mistranslation is a mechanism to create cell surface variation.

Miranda I, Silva-Dias A, Rocha R, Teixeira-Santos R, Coelho C, Gonçalves T, Santos MA, Pina-Vaz C, Solis NV, Filler SG, Rodrigues AG.

MBio. 2013 Aug 30;4(4). pii: e00285-13. doi: 10.1128/mBio.00285-13.

13.

Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids.

Danhof HA, Vylkova S, Vesely EM, Ford AE, Gonzalez-Garay M, Lorenz MC.

MBio. 2016 Nov 15;7(6). pii: e01646-16. doi: 10.1128/mBio.01646-16.

14.

Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.

Mech F, Wilson D, Lehnert T, Hube B, Thilo Figge M.

Cytometry A. 2014 Feb;85(2):126-39. doi: 10.1002/cyto.a.22418. Epub 2013 Nov 20.

15.

Prediction of phenotype-associated genes via a cellular network approach: a Candida albicans infection case study.

Wang YC, Huang SH, Lan CY, Chen BS.

PLoS One. 2012;7(4):e35339. doi: 10.1371/journal.pone.0035339. Epub 2012 Apr 11.

16.

Rab14 regulates maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and outcome of the host-pathogen interaction.

Okai B, Lyall N, Gow NA, Bain JM, Erwig LP.

Infect Immun. 2015 Apr;83(4):1523-35. doi: 10.1128/IAI.02917-14. Epub 2015 Feb 2.

17.

Human Milk Oligosaccharides Inhibit Candida albicans Invasion of Human Premature Intestinal Epithelial Cells.

Gonia S, Tuepker M, Heisel T, Autran C, Bode L, Gale CA.

J Nutr. 2015 Sep;145(9):1992-8. doi: 10.3945/jn.115.214940. Epub 2015 Jul 15.

18.

Dynamic transcript profiling of Candida albicans infection in zebrafish: a pathogen-host interaction study.

Chen YY, Chao CC, Liu FC, Hsu PC, Chen HF, Peng SC, Chuang YJ, Lan CY, Hsieh WP, Wong DS.

PLoS One. 2013 Sep 3;8(9):e72483. doi: 10.1371/journal.pone.0072483. eCollection 2013.

19.

An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism.

Smeekens SP, Gresnigt MS, Becker KL, Cheng SC, Netea SA, Jacobs L, Jansen T, van de Veerdonk FL, Williams DL, Joosten LA, Dinarello CA, Netea MG.

Cytokine. 2015 Feb;71(2):215-22. doi: 10.1016/j.cyto.2014.10.013. Epub 2014 Nov 20.

20.

A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

Yu Q, Dong Y, Xu N, Qian K, Chen Y, Zhang B, Xing L, Li M.

FEMS Yeast Res. 2014 Nov;14(7):1037-47. doi: 10.1111/1567-1364.12194. Epub 2014 Aug 28.

Supplemental Content

Support Center