Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells.

Tierney L, Linde J, Müller S, Brunke S, Molina JC, Hube B, Schöck U, Guthke R, Kuchler K.

Front Microbiol. 2012 Mar 12;3:85. doi: 10.3389/fmicb.2012.00085. eCollection 2012.

2.

Computational prediction of molecular pathogen-host interactions based on dual transcriptome data.

Schulze S, Henkel SG, Driesch D, Guthke R, Linde J.

Front Microbiol. 2015 Feb 6;6:65. doi: 10.3389/fmicb.2015.00065. eCollection 2015.

3.

Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells.

Linde J, Wilson D, Hube B, Guthke R.

BMC Syst Biol. 2010 Nov 4;4:148. doi: 10.1186/1752-0509-4-148.

4.

Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study.

Wang YC, Lin C, Chuang MT, Hsieh WP, Lan CY, Chuang YJ, Chen BS.

BMC Syst Biol. 2013 Aug 16;7:79. doi: 10.1186/1752-0509-7-79.

5.

How to Predict Molecular Interactions between Species?

Schulze S, Schleicher J, Guthke R, Linde J.

Front Microbiol. 2016 Mar 31;7:442. doi: 10.3389/fmicb.2016.00442. eCollection 2016. Review.

6.

Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling.

Pradhan A, Avelar GM, Bain JM, Childers DS, Larcombe DE, Netea MG, Shekhova E, Munro CA, Brown GD, Erwig LP, Gow NAR, Brown AJP.

MBio. 2018 Nov 6;9(6). pii: e01318-18. doi: 10.1128/mBio.01318-18.

7.

Genome-Wide Scale-Free Network Inference for Candida albicans.

Altwasser R, Linde J, Buyko E, Hahn U, Guthke R.

Front Microbiol. 2012 Feb 16;3:51. doi: 10.3389/fmicb.2012.00051. eCollection 2012.

8.

Integrated inference and evaluation of host-fungi interaction networks.

Remmele CW, Luther CH, Balkenhol J, Dandekar T, Müller T, Dittrich MT.

Front Microbiol. 2015 Aug 4;6:764. doi: 10.3389/fmicb.2015.00764. eCollection 2015.

9.

Identification of infection- and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-zebrafish infection model.

Kuo ZY, Chuang YJ, Chao CC, Liu FC, Lan CY, Chen BS.

J Innate Immun. 2013;5(2):137-52. doi: 10.1159/000347104. Epub 2013 Feb 13.

10.

Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance.

Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K.

Mol Microbiol. 2009 Jan;71(1):240-52. doi: 10.1111/j.1365-2958.2008.06528.x. Epub 2008 Nov 4.

11.

Candida albicans CUG mistranslation is a mechanism to create cell surface variation.

Miranda I, Silva-Dias A, Rocha R, Teixeira-Santos R, Coelho C, Gonçalves T, Santos MA, Pina-Vaz C, Solis NV, Filler SG, Rodrigues AG.

MBio. 2013 Aug 30;4(4). pii: e00285-13. doi: 10.1128/mBio.00285-13.

12.

Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.

Mech F, Wilson D, Lehnert T, Hube B, Thilo Figge M.

Cytometry A. 2014 Feb;85(2):126-39. doi: 10.1002/cyto.a.22418. Epub 2013 Nov 20.

13.

Prediction of phenotype-associated genes via a cellular network approach: a Candida albicans infection case study.

Wang YC, Huang SH, Lan CY, Chen BS.

PLoS One. 2012;7(4):e35339. doi: 10.1371/journal.pone.0035339. Epub 2012 Apr 11.

14.

Human Milk Oligosaccharides Inhibit Candida albicans Invasion of Human Premature Intestinal Epithelial Cells.

Gonia S, Tuepker M, Heisel T, Autran C, Bode L, Gale CA.

J Nutr. 2015 Sep;145(9):1992-8. doi: 10.3945/jn.115.214940. Epub 2015 Jul 15.

PMID:
26180242
15.

Dynamic transcript profiling of Candida albicans infection in zebrafish: a pathogen-host interaction study.

Chen YY, Chao CC, Liu FC, Hsu PC, Chen HF, Peng SC, Chuang YJ, Lan CY, Hsieh WP, Wong DS.

PLoS One. 2013 Sep 3;8(9):e72483. doi: 10.1371/journal.pone.0072483. eCollection 2013.

16.

An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism.

Smeekens SP, Gresnigt MS, Becker KL, Cheng SC, Netea SA, Jacobs L, Jansen T, van de Veerdonk FL, Williams DL, Joosten LA, Dinarello CA, Netea MG.

Cytokine. 2015 Feb;71(2):215-22. doi: 10.1016/j.cyto.2014.10.013. Epub 2014 Nov 20.

17.

A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

Yu Q, Dong Y, Xu N, Qian K, Chen Y, Zhang B, Xing L, Li M.

FEMS Yeast Res. 2014 Nov;14(7):1037-47. doi: 10.1111/1567-1364.12194. Epub 2014 Aug 28.

18.

Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations.

Pierce JV, Kumamoto CA.

MBio. 2012 Jul 24;3(4):e00117-12. doi: 10.1128/mBio.00117-12. Print 2012.

19.

Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies.

Dühring S, Germerodt S, Skerka C, Zipfel PF, Dandekar T, Schuster S.

Front Microbiol. 2015 Jun 30;6:625. doi: 10.3389/fmicb.2015.00625. eCollection 2015. Review.

20.

Global screening of potential Candida albicans biofilm-related transcription factors via network comparison.

Wang YC, Lan CY, Hsieh WP, Murillo LA, Agabian N, Chen BS.

BMC Bioinformatics. 2010 Jan 26;11:53. doi: 10.1186/1471-2105-11-53.

Supplemental Content

Support Center