Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Alterations of global histone H4K20 methylation during prostate carcinogenesis.

Behbahani TE, Kahl P, von der Gathen J, Heukamp LC, Baumann C, Gütgemann I, Walter B, Hofstädter F, Bastian PJ, von Ruecker A, Müller SC, Rogenhofer S, Ellinger J.

BMC Urol. 2012 Mar 13;12:5. doi: 10.1186/1471-2490-12-5.

2.

Global levels of histone modifications predict prostate cancer recurrence.

Ellinger J, Kahl P, von der Gathen J, Rogenhofer S, Heukamp LC, Gütgemann I, Walter B, Hofstädter F, Büttner R, Müller SC, Bastian PJ, von Ruecker A.

Prostate. 2010 Jan 1;70(1):61-9. doi: 10.1002/pros.21038.

PMID:
19739128
3.

Global histone H4K20 trimethylation predicts cancer-specific survival in patients with muscle-invasive bladder cancer.

Schneider AC, Heukamp LC, Rogenhofer S, Fechner G, Bastian PJ, von Ruecker A, Müller SC, Ellinger J.

BJU Int. 2011 Oct;108(8 Pt 2):E290-6. doi: 10.1111/j.1464-410X.2011.10203.x. Epub 2011 May 31.

4.

Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer.

Ellinger J, Kahl P, von der Gathen J, Heukamp LC, Gütgemann I, Walter B, Hofstädter F, Bastian PJ, von Ruecker A, Müller SC, Rogenhofer S.

Cancer Invest. 2012 Feb;30(2):92-7. doi: 10.3109/07357907.2011.636117. Epub 2011 Dec 7.

PMID:
22149091
5.

Epigenetics in prostate cancer: biologic and clinical relevance.

Jerónimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, Henrique R, Nelson WG, Shariat SF.

Eur Urol. 2011 Oct;60(4):753-66. doi: 10.1016/j.eururo.2011.06.035. Epub 2011 Jun 22. Review.

PMID:
21719191
6.

Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential.

Almeida M, Costa VL, Costa NR, Ramalho-Carvalho J, Baptista T, Ribeiro FR, Paulo P, Teixeira MR, Oliveira J, Lothe RA, Lind GE, Henrique R, Jerónimo C.

J Cell Mol Med. 2014 Nov;18(11):2287-97. doi: 10.1111/jcmm.12394. Epub 2014 Sep 11.

7.

Aberrant epigenetic modifications in the CTCF binding domain of the IGF2/H19 gene in prostate cancer compared with benign prostate hyperplasia.

Paradowska A, Fenic I, Konrad L, Sturm K, Wagenlehner F, Weidner W, Steger K.

Int J Oncol. 2009 Jul;35(1):87-96.

PMID:
19513555
8.

Differential expression of the mismatch repair gene hMSH2 in malignant prostate tissue is associated with cancer recurrence.

Velasco A, Hewitt SM, Albert PS, Hossein M, Rosenberg H, Martinez C, Sagalowsky AI, McConnell JD, Marston W, Leach FS.

Cancer. 2002 Feb 1;94(3):690-9. Erratum in: Cancer 2002 May 15;94(10):2800.

9.

Human heterochromatin protein 1 isoform HP1beta enhances androgen receptor activity and is implicated in prostate cancer growth.

Shiota M, Song Y, Yokomizo A, Tada Y, Kuroiwa K, Eto M, Oda Y, Inokuchi J, Uchiumi T, Fujimoto N, Seki N, Naito S.

Endocr Relat Cancer. 2010 May 18;17(2):455-67. doi: 10.1677/ERC-09-0321. Print 2010 Jun.

10.

Global histone modification patterns predict risk of prostate cancer recurrence.

Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK.

Nature. 2005 Jun 30;435(7046):1262-6.

PMID:
15988529
11.

DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation.

Kelavkar UP, Harya NS, Hutzley J, Bacich DJ, Monzon FA, Chandran U, Dhir R, O'Keefe DS.

Prostaglandins Other Lipid Mediat. 2007 Jan;82(1-4):185-97. Epub 2006 Jul 11.

PMID:
17164146
12.

Preneoplastic prostate lesions: an opportunity for prostate cancer prevention.

Nelson WG, De Marzo AM, Deweese TL, Lin X, Brooks JD, Putzi MJ, Nelson CP, Groopman JD, Kensler TW.

Ann N Y Acad Sci. 2001 Dec;952:135-44. Review.

PMID:
11795433
13.

L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer.

Koutalellis G, Stravodimos K, Avgeris M, Mavridis K, Scorilas A, Lazaris A, Constantinides C.

BJU Int. 2012 Sep;110(6 Pt B):E267-73. doi: 10.1111/j.1464-410X.2012.11152.x. Epub 2012 May 9.

14.

Methylation of the ASC gene promoter is associated with aggressive prostate cancer.

Collard RL, Harya NS, Monzon FA, Maier CE, O'Keefe DS.

Prostate. 2006 May 15;66(7):687-95.

PMID:
16425203
15.

Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development.

Bianco-Miotto T, Chiam K, Buchanan G, Jindal S, Day TK, Thomas M, Pickering MA, O'Loughlin MA, Ryan NK, Raymond WA, Horvath LG, Kench JG, Stricker PD, Marshall VR, Sutherland RL, Henshall SM, Gerald WL, Scher HI, Risbridger GP, Clements JA, Butler LM, Tilley WD, Horsfall DJ, Ricciardelli C; Australian Prostate Cancer BioResource.

Cancer Epidemiol Biomarkers Prev. 2010 Oct;19(10):2611-22. doi: 10.1158/1055-9965.EPI-10-0555. Epub 2010 Sep 14.

17.

DNA methylation of the RIZ1 gene is associated with nuclear accumulation of p53 in prostate cancer.

Hasegawa Y, Matsubara A, Teishima J, Seki M, Mita K, Usui T, Oue N, Yasui W.

Cancer Sci. 2007 Jan;98(1):32-6.

18.

Differential expression of CD10 in prostate cancer and its clinical implication.

Dall'Era MA, True LD, Siegel AF, Porter MP, Sherertz TM, Liu AY.

BMC Urol. 2007 Mar 2;7:3.

19.

Global methylation profiling for risk prediction of prostate cancer.

Mahapatra S, Klee EW, Young CY, Sun Z, Jimenez RE, Klee GG, Tindall DJ, Donkena KV.

Clin Cancer Res. 2012 May 15;18(10):2882-95. doi: 10.1158/1078-0432.CCR-11-2090.

20.

EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

Kim YJ, Yoon HY, Kim SK, Kim YW, Kim EJ, Kim IY, Kim WJ.

Clin Cancer Res. 2011 Jul 1;17(13):4523-30. doi: 10.1158/1078-0432.CCR-10-2817. Epub 2011 May 13.

Supplemental Content

Support Center