Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 225

1.

Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties.

Zhu YF, Zhang L, Natsuki T, Fu YQ, Ni QQ.

ACS Appl Mater Interfaces. 2012 Apr;4(4):2101-6. doi: 10.1021/am300069x. Epub 2012 Mar 21.

PMID:
22409350
2.

Microwave absorption enhancement and electron microscopy characterization of BaTiO₃ nano-torus.

Xia F, Liu J, Gu D, Zhao P, Zhang J, Che R.

Nanoscale. 2011 Sep 1;3(9):3860-7. doi: 10.1039/c1nr10606f. Epub 2011 Aug 8.

PMID:
21826321
3.

Synthesis and electromagnetic wave absorption properties of multi-walled carbon nanotubes decorated by BaTiO3 nanoparticles.

Bi C, Zhu M, Zhang Q, Li Y, Wang H.

J Nanosci Nanotechnol. 2011 Feb;11(2):1030-6.

PMID:
21456134
4.

Microwave permittivity, permeability, and absorption of Ni nanoplatelet composites.

Huang J, Qin Y, Li J, Jiang X, Ma F.

J Nanosci Nanotechnol. 2008 Aug;8(8):3967-72.

PMID:
19049159
5.

Microwave absorption properties of core double-shell FeCo/C/BaTiO₃ nanocomposites.

Jiang J, Li D, Geng D, An J, He J, Liu W, Zhang Z.

Nanoscale. 2014 Apr 21;6(8):3967-71. doi: 10.1039/c3nr04087a. Epub 2013 Nov 29.

PMID:
24287893
6.

Synthesis and characterization of nano-particulate BaTiO3 for ceramic/polymer composite capacitor.

Lee DK, Kim DW, Cho IS, Lee S, Noh J, Hong KS.

J Nanosci Nanotechnol. 2010 Feb;10(2):1361-6.

PMID:
20352799
7.

One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application.

Ni QQ, Zhu YF, Yu LJ, Fu YQ.

Nanoscale Res Lett. 2015 Apr 11;10:174. doi: 10.1186/s11671-015-0875-6. eCollection 2015.

8.

Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method.

Yang Y, Wang X, Sun C, Li L.

Nanotechnology. 2009 Feb 4;20(5):055709. doi: 10.1088/0957-4484/20/5/055709. Epub 2009 Jan 12.

PMID:
19417368
9.

Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption.

Yang J, Zhang J, Liang C, Wang M, Zhao P, Liu M, Liu J, Che R.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7146-51. doi: 10.1021/am4014506. Epub 2013 Jul 16.

PMID:
23819434
10.

Synthesis and microwave absorption properties of magnetite nanoparticles.

Shao X, Dai B, Zhang X, Ma Y.

J Nanosci Nanotechnol. 2012 Feb;12(2):1122-7.

PMID:
22629906
11.

Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite.

Zhao B, Shao G, Fan B, Zhao W, Zhang R.

Phys Chem Chem Phys. 2015 Feb 28;17(8):6044-52. doi: 10.1039/c4cp05229c.

PMID:
25639203
12.

Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites.

Cao J, Fu W, Yang H, Yu Q, Zhang Y, Liu S, Sun P, Zhou X, Leng Y, Wang S, Liu B, Zou G.

J Phys Chem B. 2009 Apr 9;113(14):4642-7. doi: 10.1021/jp8093287.

PMID:
19284798
13.

Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption.

Ni X, Zheng Z, Hu X, Xiao X.

J Colloid Interface Sci. 2010 Jan 1;341(1):18-22. doi: 10.1016/j.jcis.2009.09.017. Epub 2009 Sep 27.

PMID:
19833348
14.

Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method.

Liu PB, Huang Y, Sun X.

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12355-60. doi: 10.1021/am404561c. Epub 2013 Nov 20.

PMID:
24218981
15.

Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.

Najim M, Modi G, Mishra YK, Adelung R, Singh D, Agarwala V.

Phys Chem Chem Phys. 2015 Sep 21;17(35):22923-33. doi: 10.1039/c5cp03488d. Epub 2015 Aug 12.

PMID:
26267361
16.

Synthesis and microwave absorption characterization of SiO2 coated Fe3O4-MWCNT composites.

Hekmatara H, Seifi M, Forooraghi K, Mirzaee S.

Phys Chem Chem Phys. 2014 Nov 21;16(43):24069-75. doi: 10.1039/c4cp03208j. Epub 2014 Oct 7.

PMID:
25288483
17.

Epitaxial BaTiO3(100) films on Pt(100): a low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy study.

Förster S, Huth M, Schindler KM, Widdra W.

J Chem Phys. 2011 Sep 14;135(10):104701. doi: 10.1063/1.3633703.

PMID:
21932912
18.

Wet-chemical synthesis of crystalline BaTiO3 from stable chelated titanium complex: formation mechanism and dispersibility in organic solvents.

Pramanik NC, Seok SI, Ahn BY.

J Colloid Interface Sci. 2006 Aug 15;300(2):569-76. Epub 2006 May 16.

PMID:
16707133
19.

Microwave assisted semi-solvothermal synthesis of nanocrystalline barium titanate.

Lee JM, Amalnerkar DP, Hwang YK, Jhung SH, Hwang JS, Chang JS.

J Nanosci Nanotechnol. 2007 Mar;7(3):952-9.

PMID:
17450858
20.

Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells.

Zhao B, Shao G, Fan B, Zhao W, Xie Y, Zhang R.

Phys Chem Chem Phys. 2015 Apr 14;17(14):8802-10. doi: 10.1039/c4cp05632a. Epub 2015 Mar 6.

PMID:
25745675

Supplemental Content

Support Center