Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

1.

Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas.

Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS.

J Biol Chem. 2012 May 4;287(19):15811-25. doi: 10.1074/jbc.M111.334052. Epub 2012 Mar 8.

2.

Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter.

Iwai M, Ikeda K, Shimojima M, Ohta H.

Plant Biotechnol J. 2014 Aug;12(6):808-19. doi: 10.1111/pbi.12210. Epub 2014 Jun 9.

3.

Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity.

Li X, Benning C, Kuo MH.

Eukaryot Cell. 2012 Dec;11(12):1451-62. doi: 10.1128/EC.00268-12. Epub 2012 Oct 5.

4.

DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development.

Zhang M, Fan J, Taylor DC, Ohlrogge JB.

Plant Cell. 2009 Dec;21(12):3885-901. doi: 10.1105/tpc.109.071795. Epub 2009 Dec 29.

5.

Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.

La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH.

J Biotechnol. 2012 Nov 30;162(1):13-20. doi: 10.1016/j.jbiotec.2012.04.006. Epub 2012 Apr 20.

PMID:
22542934
6.

Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency.

Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, Hirono M, Sato N, Fukuzawa H.

Plant Physiol. 2015 Jun;168(2):752-64. doi: 10.1104/pp.15.00319. Epub 2015 Apr 28.

8.

Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2.

Xu J, Carlsson AS, Francis T, Zhang M, Hoffman T, Giblin ME, Taylor DC.

BMC Plant Biol. 2012 Jan 10;12:4. doi: 10.1186/1471-2229-12-4.

9.

Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC40, a transcription factor involved in circadian rhythm.

Goncalves EC, Koh J, Zhu N, Yoo MJ, Chen S, Matsuo T, Johnson JV, Rathinasabapathi B.

Plant J. 2016 Mar;85(6):743-57. doi: 10.1111/tpj.13144.

10.

Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.

Hung CH, Kanehara K, Nakamura Y.

Biochim Biophys Acta. 2016 Sep;1861(9 Pt B):1282-1293. doi: 10.1016/j.bbalip.2016.04.001. Epub 2016 Apr 7.

PMID:
27060488
11.

Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii.

Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T.

Biotechnol Bioeng. 2012 Aug;109(8):1947-57. doi: 10.1002/bit.24474. Epub 2012 Mar 2.

PMID:
22383222
12.

Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin.

Pan X, Siloto RM, Wickramarathna AD, Mietkiewska E, Weselake RJ.

J Biol Chem. 2013 Aug 16;288(33):24173-88. doi: 10.1074/jbc.M113.475699. Epub 2013 Jul 2.

13.

Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation.

Aksoy M, Pootakham W, Grossman AR.

Plant Cell. 2014 Oct;26(10):4214-29. doi: 10.1105/tpc.114.129270. Epub 2014 Oct 3.

14.

Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation.

Hernández-Torres A, Zapata-Morales AL, Ochoa Alfaro AE, Soria-Guerra RE.

World J Microbiol Biotechnol. 2016 Apr;32(4):55. doi: 10.1007/s11274-016-2008-5. Epub 2016 Feb 29.

PMID:
26925617
15.

Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.

Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H.

Phytochemistry. 2012 Mar;75:50-9. doi: 10.1016/j.phytochem.2011.12.007. Epub 2012 Jan 5.

PMID:
22226037
16.

Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant.

Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS.

Plant Cell. 2013 Nov;25(11):4305-23. doi: 10.1105/tpc.113.117580. Epub 2013 Nov 26.

17.

Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation.

Lv H, Qu G, Qi X, Lu L, Tian C, Ma Y.

Genomics. 2013 Apr;101(4):229-37. doi: 10.1016/j.ygeno.2013.01.004. Epub 2013 Feb 5.

18.

Downregulation of a putative plastid PDC E1╬▒ subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii.

Shtaida N, Khozin-Goldberg I, Solovchenko A, Chekanov K, Didi-Cohen S, Leu S, Cohen Z, Boussiba S.

J Exp Bot. 2014 Dec;65(22):6563-76. doi: 10.1093/jxb/eru374. Epub 2014 Sep 10.

19.

The MYB96 Transcription Factor Regulates Triacylglycerol Accumulation by Activating DGAT1 and PDAT1 Expression in Arabidopsis Seeds.

Lee HG, Kim H, Suh MC, Kim HU, Seo PJ.

Plant Cell Physiol. 2018 Jul 1;59(7):1432-1442. doi: 10.1093/pcp/pcy073.

PMID:
29660088
20.

A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii.

Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C.

Plant Cell. 2012 Nov;24(11):4670-86. doi: 10.1105/tpc.112.105106. Epub 2012 Nov 16.

Supplemental Content

Support Center