Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Protein tyrosine nitration of mitochondrial carbamoyl phosphate synthetase 1 and its functional consequences.

Takakusa H, Mohar I, Kavanagh TJ, Kelly EJ, Kaspera R, Nelson SD.

Biochem Biophys Res Commun. 2012 Mar 30;420(1):54-60. doi: 10.1016/j.bbrc.2012.02.114. Epub 2012 Feb 28.

2.

The Study of Carbamoyl Phosphate Synthetase 1 Deficiency Sheds Light on the Mechanism for Switching On/Off the Urea Cycle.

Díez-Fernández C, Gallego J, Häberle J, Cervera J, Rubio V.

J Genet Genomics. 2015 May 20;42(5):249-60. doi: 10.1016/j.jgg.2015.03.009. Epub 2015 Apr 1.

PMID:
26059772
3.

Peroxynitrite treatment in vitro disables catalytic activity of recombinant p38 MAPK.

Webster RP, Macha S, Brockman D, Myatt L.

Proteomics. 2006 Sep;6(17):4838-44.

PMID:
16878296
4.

Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration.

Corpas FJ, Leterrier M, Begara-Morales JC, Valderrama R, Chaki M, López-Jaramillo J, Luque F, Palma JM, Padilla MN, Sánchez-Calvo B, Mata-Pérez C, Barroso JB.

Biochim Biophys Acta. 2013 Nov;1830(11):4981-9. doi: 10.1016/j.bbagen.2013.07.002. Epub 2013 Jul 13.

PMID:
23860243
5.

Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: effects of CPS1 mutations that concentrate in a central domain of unknown function.

Díez-Fernández C, Hu L, Cervera J, Häberle J, Rubio V.

Mol Genet Metab. 2014 Jun;112(2):123-32. doi: 10.1016/j.ymgme.2014.04.003. Epub 2014 Apr 18.

PMID:
24813853
6.

The nitrated proteome in heart mitochondria of the db/db mouse model: characterization of nitrated tyrosine residues in SCOT.

Wang Y, Peng F, Tong W, Sun H, Xu N, Liu S.

J Proteome Res. 2010 Aug 6;9(8):4254-63. doi: 10.1021/pr100349g.

PMID:
20527992
7.

Nitration of a critical tyrosine residue in the allosteric inhibitor site of muscle glycogen phosphorylase impairs its catalytic activity.

Dairou J, Pluvinage B, Noiran J, Petit E, Vinh J, Haddad I, Mary J, Dupret JM, Rodrigues-Lima F.

J Mol Biol. 2007 Sep 28;372(4):1009-21. Epub 2007 Jul 21.

PMID:
17689562
8.

Nitration of tyrosine 92 mediates the activation of rat microsomal glutathione s-transferase by peroxynitrite.

Ji Y, Neverova I, Van Eyk JE, Bennett BM.

J Biol Chem. 2006 Jan 27;281(4):1986-91. Epub 2005 Nov 28.

9.
10.

Recurrence of carbamoyl phosphate synthetase 1 (CPS1) deficiency in Turkish patients: characterization of a founder mutation by use of recombinant CPS1 from insect cells expression.

Hu L, Diez-Fernandez C, Rüfenacht V, Hismi BÖ, Ünal Ö, Soyucen E, Çoker M, Bayraktar BT, Gunduz M, Kiykim E, Olgac A, Pérez-Tur J, Rubio V, Häberle J.

Mol Genet Metab. 2014 Dec;113(4):267-73. doi: 10.1016/j.ymgme.2014.09.014. Epub 2014 Oct 7.

PMID:
25410056
11.

Tyrosine phosphorylation/dephosphorylation regulates peroxynitrite-mediated peptide nitration.

Shi WQ, Cai H, Xu DD, Su XY, Lei P, Zhao YF, Li YM.

Regul Pept. 2007 Dec 4;144(1-3):1-5. Epub 2007 Jul 10.

PMID:
17669515
12.

Selective nitration of Tyr99 in calmodulin as a marker of cellular conditions of oxidative stress.

Smallwood HS, Galeva NA, Bartlett RK, Urbauer RJ, Williams TD, Urbauer JL, Squier TC.

Chem Res Toxicol. 2003 Jan;16(1):95-102.

PMID:
12693036
13.

Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer.

Martinez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, Moreno DM, Lima A, Batthyány C, Durán R, Robello C, Martí MA, Larrieux N, Buschiazzo A, Trujillo M, Radi R, Piacenza L.

J Biol Chem. 2014 May 2;289(18):12760-78. doi: 10.1074/jbc.M113.545590. Epub 2014 Mar 10.

14.
16.

Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite.

Batthyány C, Souza JM, Durán R, Cassina A, Cerveñansky C, Radi R.

Biochemistry. 2005 Jun 7;44(22):8038-46.

PMID:
15924423
17.

Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration.

Görg B, Qvartskhava N, Voss P, Grune T, Häussinger D, Schliess F.

FEBS Lett. 2007 Jan 9;581(1):84-90. Epub 2006 Dec 12.

18.

Molecular characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using human recombinant CPS1 as a key tool.

Diez-Fernandez C, Martínez AI, Pekkala S, Barcelona B, Pérez-Arellano I, Guadalajara AM, Summar M, Cervera J, Rubio V.

Hum Mutat. 2013 Aug;34(8):1149-59. doi: 10.1002/humu.22349. Epub 2013 May 28.

PMID:
23649895
19.

Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency.

Martínez AI, Pérez-Arellano I, Pekkala S, Barcelona B, Cervera J.

Mol Genet Metab. 2010 Dec;101(4):311-23. doi: 10.1016/j.ymgme.2010.08.002. Epub 2010 Aug 6. Review.

PMID:
20800523
20.

Peroxynitrite-mediated nitration of tyrosine and inactivation of the catalytic activity of cytochrome P450 2B1.

Roberts ES, Lin Hl, Crowley JR, Vuletich JL, Osawa Y, Hollenberg PF.

Chem Res Toxicol. 1998 Sep;11(9):1067-74.

PMID:
9760281

Supplemental Content

Support Center