Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Transport inefficiency in branched-out mesoscopic networks: an analog of the Braess paradox.

Pala MG, Baltazar S, Liu P, Sellier H, Hackens B, Martins F, Bayot V, Wallart X, Desplanque L, Huant S.

Phys Rev Lett. 2012 Feb 17;108(7):076802. Epub 2012 Feb 13.

PMID:
22401236
2.

A new transport phenomenon in nanostructures: a mesoscopic analog of the Braess paradox encountered in road networks.

Pala M, Sellier H, Hackens B, Martins F, Bayot V, Huant S.

Nanoscale Res Lett. 2012 Aug 22;7(1):472. doi: 10.1186/1556-276X-7-472.

3.

Braess paradox in a network of totally asymmetric exclusion processes.

Bittihn S, Schadschneider A.

Phys Rev E. 2016 Dec;94(6-1):062312. doi: 10.1103/PhysRevE.94.062312. Epub 2016 Dec 21.

PMID:
28085325
4.

Universal Braess paradox in open quantum dots.

Barbosa AL, Bazeia D, Ramos JG.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042915. Epub 2014 Oct 17.

PMID:
25375575
5.

A coherent RC circuit.

Gabelli J, Fève G, Berroir JM, Plaçais B.

Rep Prog Phys. 2012 Dec;75(12):126504. doi: 10.1088/0034-4885/75/12/126504. Epub 2012 Nov 12.

PMID:
23146911
6.

Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids.

Coletta T, Jacquod P.

Phys Rev E. 2016 Mar;93(3):032222. doi: 10.1103/PhysRevE.93.032222. Epub 2016 Mar 31.

PMID:
27078359
7.

Congestion Induced by the Structure of Multiplex Networks.

Solé-Ribalta A, Gómez S, Arenas A.

Phys Rev Lett. 2016 Mar 11;116(10):108701. doi: 10.1103/PhysRevLett.116.108701. Epub 2016 Mar 10.

PMID:
27015514
8.

Scanning gate microscopy on graphene: charge inhomogeneity and extrinsic doping.

Jalilian R, Jauregui LA, Lopez G, Tian J, Roecker C, Yazdanpanah MM, Cohn RW, Jovanovic I, Chen YP.

Nanotechnology. 2011 Jul 22;22(29):295705. doi: 10.1088/0957-4484/22/29/295705. Epub 2011 Jun 16.

PMID:
21677372
9.

Imaging coherent transport in graphene. Part I: mapping universal conductance fluctuations.

Berezovsky J, Borunda MF, Heller EJ, Westervelt RM.

Nanotechnology. 2010 Jul 9;21(27):274013. doi: 10.1088/0957-4484/21/27/274013. Epub 2010 Jun 22.

PMID:
20571200
10.

Mesoscopic features in the transport properties of a Kondo-correlated quantum dot in a magnetic field.

Camjayi A, Arrachea L.

J Phys Condens Matter. 2014 Jan 22;26(3):035602. doi: 10.1088/0953-8984/26/3/035602. Epub 2013 Dec 18.

PMID:
24351510
11.

Interaction of scanning tunneling microscopy tip with mesoscopic islands at the atomic-scale.

Huang RZ, Stepanyuk VS, Kirschner J.

J Phys Condens Matter. 2006 May 3;18(17):L217-23. doi: 10.1088/0953-8984/18/17/L02. Epub 2006 Apr 13.

PMID:
21690764
12.

Rectification in mesoscopic systems with broken symmetry: quasiclassical ballistic versus classical transport.

de Haan S, Lorke A, Kotthaus JP, Wegscheider W, Bichler M.

Phys Rev Lett. 2004 Feb 6;92(5):056806. Epub 2004 Feb 6.

PMID:
14995331
13.

Fractal conductance fluctuations of classical origin.

Hennig H, Fleischmann R, Hufnagel L, Geisel T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 2):015202. Epub 2007 Jul 16.

PMID:
17677525
14.

Charge density mapping of strongly-correlated few-electron two-dimensional quantum dots by the scanning probe technique.

Wach E, Zebrowski DP, Szafran B.

J Phys Condens Matter. 2013 Aug 21;25(33):335801. doi: 10.1088/0953-8984/25/33/335801. Epub 2013 Jul 24.

PMID:
23880879
15.

Spin interference and the Fano effect in electron transport through a mesoscopic ring side-coupled with a quantum dot.

Ding GH, Dong B.

J Phys Condens Matter. 2010 Apr 7;22(13):135301. doi: 10.1088/0953-8984/22/13/135301. Epub 2010 Mar 12.

PMID:
21389513
16.

Quantum lattice-gas model for computational fluid dynamics.

Yepez J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 2):046702. Epub 2001 Mar 29.

PMID:
11308976
17.

Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots.

Avinun-Kalish M, Heiblum M, Zarchin O, Mahalu D, Umansky V.

Nature. 2005 Jul 28;436(7050):529-33.

PMID:
16049482
18.

Local transport measurements at mesoscopic length scales using scanning tunneling potentiometry.

Wang W, Munakata K, Rozler M, Beasley MR.

Phys Rev Lett. 2013 Jun 7;110(23):236802. Epub 2013 Jun 4.

PMID:
25167521
19.

Conductance maps of quantum rings due to a local potential perturbation.

Petrović MD, Peeters FM, Chaves A, Farias GA.

J Phys Condens Matter. 2013 Dec 11;25(49):495301. doi: 10.1088/0953-8984/25/49/495301. Epub 2013 Nov 1.

PMID:
24184634
20.

Transport through quantum dots in mesoscopic circuits.

Cornaglia PS, Balseiro CA.

Phys Rev Lett. 2003 May 30;90(21):216801. Epub 2003 May 30.

PMID:
12786579

Supplemental Content

Support Center