Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.

Saito S, Motawia MS, Olsen CE, Møller BL, Bak S.

Phytochemistry. 2012 May;77:260-7. doi: 10.1016/j.phytochem.2012.01.020. Epub 2012 Mar 3.

PMID:
22385904
2.

Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.

Forslund K, Morant M, Jørgensen B, Olsen CE, Asamizu E, Sato S, Tabata S, Bak S.

Plant Physiol. 2004 May;135(1):71-84.

3.

The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution.

Lai D, Abou Hachem M, Robson F, Olsen CE, Wang TL, Møller BL, Takos AM, Rook F.

Plant J. 2014 Jul;79(2):299-311. doi: 10.1111/tpj.12561. Epub 2014 Jun 23.

4.

Diversification of an ancient theme: hydroxynitrile glucosides.

Bjarnholt N, Rook F, Motawia MS, Cornett C, Jørgensen C, Olsen CE, Jaroszewski JW, Bak S, Møller BL.

Phytochemistry. 2008 May;69(7):1507-16. doi: 10.1016/j.phytochem.2008.01.022. Epub 2008 Mar 14.

PMID:
18342345
5.

Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.

Jørgensen K, Morant AV, Morant M, Jensen NB, Olsen CE, Kannangara R, Motawia MS, Møller BL, Bak S.

Plant Physiol. 2011 Jan;155(1):282-92. doi: 10.1104/pp.110.164053. Epub 2010 Nov 2.

6.

Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.

Takos A, Lai D, Mikkelsen L, Abou Hachem M, Shelton D, Motawia MS, Olsen CE, Wang TL, Martin C, Rook F.

Plant Cell. 2010 May;22(5):1605-19. doi: 10.1105/tpc.109.073502. Epub 2010 May 7.

7.
8.

Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.

Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K, Møller BL, Rook F.

Plant J. 2011 Oct;68(2):273-86. doi: 10.1111/j.1365-313X.2011.04685.x. Epub 2011 Jul 26.

9.

The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.

Morant AV, Bjarnholt N, Kragh ME, Kjaergaard CH, Jørgensen K, Paquette SM, Piotrowski M, Imberty A, Olsen CE, Møller BL, Bak S.

Plant Physiol. 2008 Jul;147(3):1072-91. doi: 10.1104/pp.107.109512. Epub 2008 May 8. Erratum in: Plant Physiol. 2010 Apr;152(4):2269.

10.

The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz).

Koch B, Nielsen VS, Halkier BA, Olsen CE, Møller BL.

Arch Biochem Biophys. 1992 Jan;292(1):141-50.

PMID:
1727632
11.
13.

454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.

Zagrobelny M, Scheibye-Alsing K, Jensen NB, Møller BL, Gorodkin J, Bak S.

BMC Genomics. 2009 Dec 2;10:574. doi: 10.1186/1471-2164-10-574.

15.

Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes.

Nielsen JS, Moller BL.

Arch Biochem Biophys. 1999 Aug 1;368(1):121-30.

PMID:
10415119
16.

Biosynthesis of cyanogenic glycosides.

Conn EE.

Naturwissenschaften. 1979 Jan;66(1):28-34.

PMID:
423994
18.

Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging.

Li B, Knudsen C, Hansen NK, Jørgensen K, Kannangara R, Bak S, Takos A, Rook F, Hansen SH, Møller BL, Janfelt C, Bjarnholt N.

Plant J. 2013 Jun;74(6):1059-71. doi: 10.1111/tpj.12183. Epub 2013 May 6.

19.

Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.

Zagrobelny M, Møller BL.

Phytochemistry. 2011 Sep;72(13):1585-92. doi: 10.1016/j.phytochem.2011.02.023. Epub 2011 Mar 21. Review.

PMID:
21429539
20.

The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways.

Clausen M, Kannangara RM, Olsen CE, Blomstedt CK, Gleadow RM, Jørgensen K, Bak S, Motawie MS, Møller BL.

Plant J. 2015 Nov;84(3):558-73. doi: 10.1111/tpj.13023.

Supplemental Content

Support Center