Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans.

Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BP.

Mol Microbiol. 2012 Apr;84(1):166-80. doi: 10.1111/j.1365-2958.2012.08017.x. Epub 2012 Mar 5.

2.

Defensins from insects and plants interact with fungal glucosylceramides.

Thevissen K, Warnecke DC, François IE, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BP, Ferket KK, Cammue BP.

J Biol Chem. 2004 Feb 6;279(6):3900-5. Epub 2003 Nov 6.

3.

The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans.

Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K.

J Mol Microbiol Biotechnol. 2007;13(4):243-7.

PMID:
17827975
4.

In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis.

Tavares PM, Thevissen K, Cammue BP, François IE, Barreto-Bergter E, Taborda CP, Marques AF, Rodrigues ML, Nimrichter L.

Antimicrob Agents Chemother. 2008 Dec;52(12):4522-5. doi: 10.1128/AAC.00448-08. Epub 2008 Sep 29.

5.

The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans.

Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, François IE, Madeo F, Santos R, Cammue BP, Thevissen K.

FEBS Lett. 2009 Aug 6;583(15):2513-6. doi: 10.1016/j.febslet.2009.07.004. Epub 2009 Jul 14.

6.

Rapid redistribution of phosphatidylinositol-(4,5)-bisphosphate and septins during the Candida albicans response to caspofungin.

Badrane H, Nguyen MH, Blankenship JR, Cheng S, Hao B, Mitchell AP, Clancy CJ.

Antimicrob Agents Chemother. 2012 Sep;56(9):4614-24. doi: 10.1128/AAC.00112-12. Epub 2012 Jun 11.

7.

The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms.

Vriens K, Cools TL, Harvey PJ, Craik DJ, Braem A, Vleugels J, De Coninck B, Cammue BP, Thevissen K.

Peptides. 2016 Jan;75:71-9. doi: 10.1016/j.peptides.2015.11.001. Epub 2015 Nov 28.

PMID:
26592804
8.

Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation.

Li CR, Lee RT, Wang YM, Zheng XD, Wang Y.

J Cell Sci. 2007 Jun 1;120(Pt 11):1898-907. Epub 2007 May 15.

9.

SUMO modification of septin-interacting proteins in Candida albicans.

Martin SW, Konopka JB.

J Biol Chem. 2004 Sep 24;279(39):40861-7. Epub 2004 Jul 23.

10.

Septin function in Candida albicans morphogenesis.

Warenda AJ, Konopka JB.

Mol Biol Cell. 2002 Aug;13(8):2732-46.

11.

The Candida albicans phosphatase Inp51p interacts with the EH domain protein Irs4p, regulates phosphatidylinositol-4,5-bisphosphate levels and influences hyphal formation, the cell integrity pathway and virulence.

Badrane H, Nguyen MH, Cheng S, Kumar V, Derendorf H, Iczkowski KA, Clancy CJ.

Microbiology. 2008 Nov;154(Pt 11):3296-308. doi: 10.1099/mic.0.2008/018002-0.

PMID:
18957583
12.

Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth.

González-Novo A, Correa-Bordes J, Labrador L, Sánchez M, Vázquez de Aldana CR, Jiménez J.

Mol Biol Cell. 2008 Apr;19(4):1509-18. doi: 10.1091/mbc.E07-09-0876. Epub 2008 Jan 30.

13.

Role of endothelial cell septin 7 in the endocytosis of Candida albicans.

Phan QT, Eng DK, Mostowy S, Park H, Cossart P, Filler SG.

MBio. 2013 Dec 17;4(6):e00542-13. doi: 10.1128/mBio.00542-13.

14.

The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans.

Urban C, Xiong X, Sohn K, Schröppel K, Brunner H, Rupp S.

Mol Microbiol. 2005 Sep;57(5):1318-41.

15.

Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans.

Oguro Y, Yamazaki H, Takagi M, Takaku H.

Curr Genet. 2014 May;60(2):89-97. doi: 10.1007/s00294-013-0416-8. Epub 2013 Nov 20.

PMID:
24253293
16.

Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.

Brand A, Barnes JD, Mackenzie KS, Odds FC, Gow NA.

FEMS Microbiol Lett. 2008 Oct;287(1):48-55. doi: 10.1111/j.1574-6968.2008.01301.x. Epub 2008 Aug 2.

17.

The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans.

Aerts AM, Bammens L, Govaert G, Carmona-Gutierrez D, Madeo F, Cammue BP, Thevissen K.

Front Microbiol. 2011 Mar 16;2:47. doi: 10.3389/fmicb.2011.00047. eCollection 2011.

18.

Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence.

Qu Y, Jelicic B, Pettolino F, Perry A, Lo TL, Hewitt VL, Bantun F, Beilharz TH, Peleg AY, Lithgow T, Djordjevic JT, Traven A.

Eukaryot Cell. 2012 Apr;11(4):532-44. doi: 10.1128/EC.05292-11. Epub 2012 Jan 27.

19.

Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z.

Funct Integr Genomics. 2011 Mar;11(1):63-70. doi: 10.1007/s10142-011-0211-x. Epub 2011 Jan 29.

PMID:
21279533
20.

Psd1 binding affinity toward fungal membrane components as assessed by SPR: The role of glucosylceramide in fungal recognition and entry.

de Medeiros LN, Domitrovic T, de Andrade PC, Faria J, Bergter EB, Weissmüller G, Kurtenbach E.

Biopolymers. 2014 Nov;102(6):456-64. doi: 10.1002/bip.22570.

PMID:
25283273
Items per page

Supplemental Content

Write to the Help Desk