Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 182

1.

Kinetic and mechanistic investigations of the light induced formation of gold nanoparticles on the surface of TiO2.

Mohamed HH, Dillert R, Bahnemann DW.

Chemistry. 2012 Apr 2;18(14):4314-21. doi: 10.1002/chem.201102799.

PMID:
22374869
2.

Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO2 nanoparticles: a stopped flow study.

Mohamed HH, Mendive CB, Dillert R, Bahnemann DW.

J Phys Chem A. 2011 Mar 24;115(11):2139-47. doi: 10.1021/jp108958w.

PMID:
21366310
3.

Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration.

Subramanian V, Wolf EE, Kamat PV.

J Am Chem Soc. 2004 Apr 21;126(15):4943-50.

PMID:
15080700
4.

Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation.

Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T.

J Am Chem Soc. 2012 Apr 11;134(14):6309-15. doi: 10.1021/ja2120647.

PMID:
22440019
5.

Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces.

Kowalska E, Mahaney OO, Abe R, Ohtani B.

Phys Chem Chem Phys. 2010 Mar 14;12(10):2344-55. doi: 10.1039/b917399d.

PMID:
20449347
6.

Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.

Zhu A, Luo Y, Tian Y.

Anal Chem. 2009 Sep 1;81(17):7243-7. doi: 10.1021/ac900894p.

PMID:
19655788
7.

Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface.

Takai A, Kamat PV.

ACS Nano. 2011 Sep 27;5(9):7369-76. doi: 10.1021/nn202294b.

PMID:
21819038
8.

Role of micro-structure and interfacial properties in the higher photocatalytic activity of TiO2-supported nanogold for methanol-assisted visible-light-induced splitting of water.

Awate SV, Deshpande SS, Rakesh K, Dhanasekaran P, Gupta NM.

Phys Chem Chem Phys. 2011 Jun 21;13(23):11329-39. doi: 10.1039/c1cp21194c.

PMID:
21552605
9.

The effect of dissolved oxygen on the 1,4-dioxane degradation with TiO2 and Au-TiO2 photocatalysts.

Youn NK, Heo JE, Joo OS, Lee H, Kim J, Min BK.

J Hazard Mater. 2010 May 15;177(1-3):216-21. doi: 10.1016/j.jhazmat.2009.12.020.

PMID:
20034741
10.
11.

Synergistic enhanced photocatalytic and photothermal activity of Au@TiO2 nanopellets against human epithelial carcinoma cells.

Abdulla-Al-Mamun M, Kusumoto Y, Zannat T, Islam MS.

Phys Chem Chem Phys. 2011 Dec 21;13(47):21026-34. doi: 10.1039/c1cp22683e.

PMID:
22011673
13.

Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities.

Tanaka A, Ogino A, Iwaki M, Hashimoto K, Ohnuma A, Amano F, Ohtani B, Kominami H.

Langmuir. 2012 Sep 11;28(36):13105-11. doi: 10.1021/la301944b.

PMID:
22900610
14.

The effect of high intensity ultrasound on the loading of Au nanoparticles into titanium dioxide.

Belova V, Borodina T, Möhwald H, Shchukin DG.

Ultrason Sonochem. 2011 Jan;18(1):310-7. doi: 10.1016/j.ultsonch.2010.06.012.

PMID:
20638889
15.

Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis.

Lu Y, Yu H, Chen S, Quan X, Zhao H.

Environ Sci Technol. 2012 Feb 7;46(3):1724-30. doi: 10.1021/es202669y.

PMID:
22224958
16.

Photoassisted reduction of metal ions and organic dye by titanium dioxide nanoparticles in aqueous solution under anoxic conditions.

Doong RA, Hsieh TC, Huang CP.

Sci Total Environ. 2010 Jul 15;408(16):3334-41. doi: 10.1016/j.scitotenv.2010.03.032.

PMID:
20447680
17.

Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films.

Green AN, Chandler RE, Haque SA, Nelson J, Durrant JR.

J Phys Chem B. 2005 Jan 13;109(1):142-50.

PMID:
16850997
18.

Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol.

Pradhan S, Ghosh D, Chen S.

ACS Appl Mater Interfaces. 2009 Sep;1(9):2060-5. doi: 10.1021/am900425v.

PMID:
20355833
19.

Real-time monitoring of copolymer stabilized growing gold nanoparticles.

Polte J, Emmerling F, Radtke M, Reinholz U, Riesemeier H, Thünemann AF.

Langmuir. 2010 Apr 20;26(8):5889-94. doi: 10.1021/la903829q.

PMID:
20085232
20.

Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions.

Kongkanand A, Kamat PV.

ACS Nano. 2007 Aug;1(1):13-21. doi: 10.1021/nn700036f.

PMID:
19203126
Items per page

Supplemental Content

Support Center