Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

How much does the amphioxus genome represent the ancestor of chordates?

Louis A, Roest Crollius H, Robinson-Rechavi M.

Brief Funct Genomics. 2012 Mar;11(2):89-95. doi: 10.1093/bfgp/els003. Review.

2.

The amphioxus genome and the evolution of the chordate karyotype.

Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS.

Nature. 2008 Jun 19;453(7198):1064-71. doi: 10.1038/nature06967.

PMID:
18563158
3.

DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates.

Albalat R, Martí-Solans J, Cañestro C.

Brief Funct Genomics. 2012 Mar;11(2):142-55. doi: 10.1093/bfgp/els009. Review.

PMID:
22389042
4.

Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention.

Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, Vingron M, Poustka AJ, Panopoulou G.

Genome Res. 2009 Nov;19(11):2036-51. doi: 10.1101/gr.093237.109.

5.

The cephalochordate amphioxus: a key to reveal the secrets of nuclear receptor evolution.

Lecroisey C, Laudet V, Schubert M.

Brief Funct Genomics. 2012 Mar;11(2):156-66. doi: 10.1093/bfgp/els008. Review.

PMID:
22441553
6.

Gene duplications in the prototypical cephalochordate amphioxus.

Minguillón C, Ferrier DE, Cebrián C, Garcia-Fernàndez J.

Gene. 2002 Apr 3;287(1-2):121-8.

PMID:
11992730
7.
8.

Molecular evolution of a chordate specific family of G protein-coupled receptors.

Kurtenbach S, Mayer C, Pelz T, Hatt H, Leese F, Neuhaus EM.

BMC Evol Biol. 2011 Aug 9;11:234. doi: 10.1186/1471-2148-11-234.

9.

Hemichordate genomes and deuterostome origins.

Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, Yue JX, Chen YC, Freeman RM Jr, Sasaki A, Hikosaka-Katayama T, Sato A, Fujie M, Baughman KW, Levine J, Gonzalez P, Cameron C, Fritzenwanker JH, Pani AM, Goto H, Kanda M, Arakaki N, Yamasaki S, Qu J, Cree A, Ding Y, Dinh HH, Dugan S, Holder M, Jhangiani SN, Kovar CL, Lee SL, Lewis LR, Morton D, Nazareth LV, Okwuonu G, Santibanez J, Chen R, Richards S, Muzny DM, Gillis A, Peshkin L, Wu M, Humphreys T, Su YH, Putnam NH, Schmutz J, Fujiyama A, Yu JK, Tagawa K, Worley KC, Gibbs RA, Kirschner MW, Lowe CJ, Satoh N, Rokhsar DS, Gerhart J.

Nature. 2015 Nov 26;527(7579):459-65. doi: 10.1038/nature16150.

10.

Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences.

Cañestro C, Albalat R.

Brief Funct Genomics. 2012 Mar;11(2):131-41. doi: 10.1093/bfgp/els010. Review.

PMID:
22389043
11.

Cis-regulation and conserved non-coding elements in amphioxus.

Beaster-Jones L.

Brief Funct Genomics. 2012 Mar;11(2):118-30. doi: 10.1093/bfgp/els006. Review.

PMID:
22402505
12.

The amphioxus genome illuminates vertebrate origins and cephalochordate biology.

Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernàndez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW.

Genome Res. 2008 Jul;18(7):1100-11. doi: 10.1101/gr.073676.107. Erratum in: Genome Res. 2008 Aug;18(8):1380.

13.

Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution.

Horton AC, Mahadevan NR, Ruvinsky I, Gibson-Brown JJ.

J Exp Zool B Mol Dev Evol. 2003 Oct 15;299(1):41-53.

PMID:
14508816
14.

Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits.

Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande ML, Pontarotti P, Escriva H.

Proc Natl Acad Sci U S A. 2011 May 31;108(22):9160-5. doi: 10.1073/pnas.1014235108.

15.

Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective.

Coppola U, Annona G, D'Aniello S, Ristoratore F.

BMC Evol Biol. 2016 Jan 27;16:26. doi: 10.1186/s12862-016-0596-1.

16.

Nuclear hormone receptors in chordates.

Bertrand S, Belgacem MR, Escriva H.

Mol Cell Endocrinol. 2011 Mar 1;334(1-2):67-75. doi: 10.1016/j.mce.2010.06.017. Review.

PMID:
20620189
17.

From the American to the European amphioxus: towards experimental Evo-Devo at the origin of chordates.

Garcia-Fernàndez J, Jiménez-Delgado S, Pascual-Anaya J, Maeso I, Irimia M, Minguillón C, Benito-Gutiérrez E, Gardenyes J, Bertrand S, D'Aniello S.

Int J Dev Biol. 2009;53(8-10):1359-66. doi: 10.1387/ijdb.072436jg.

18.

Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.

Gillis WQ, St John J, Bowerman B, Schneider SQ.

BMC Evol Biol. 2009 Aug 20;9:207. doi: 10.1186/1471-2148-9-207.

19.

A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?

Paps J, Holland PW, Shimeld SM.

Brief Funct Genomics. 2012 Mar;11(2):177-86. doi: 10.1093/bfgp/els012. Review.

PMID:
22441554
20.

Evolutionary genomics of the recently duplicated amphioxus Hairy genes.

Jiménez-Delgado S, Crespo M, Permanyer J, Garcia-Fernàndez J, Manzanares M.

Int J Biol Sci. 2006;2(2):66-72.

Items per page

Supplemental Content

Support Center