Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 211

1.

Amelioration of renal injury and oxidative stress by the nNOS inhibitor L-VNIO in the salt-sensitive mRen2.Lewis congenic rat.

Yamaleyeva LM, Lindsey SH, Varagic J, Zhang LL, Gallagher PE, Chen AF, Chappell MC.

J Cardiovasc Pharmacol. 2012 Jun;59(6):529-38. doi: 10.1097/FJC.0b013e31824dd15b.

2.

Discoordinate regulation of renal nitric oxide synthase isoforms in ovariectomized mRen2. Lewis rats.

Yamaleyeva LM, Gallagher PE, Vinsant S, Chappell MC.

Am J Physiol Regul Integr Comp Physiol. 2007 Feb;292(2):R819-26. Epub 2006 Oct 5.

3.

Neuronal nitric oxide synthase inhibition improves diastolic function and reduces oxidative stress in ovariectomized mRen2.Lewis rats.

Jessup JA, Zhang L, Chen AF, Presley TD, Kim-Shapiro DB, Chappell MC, Wang H, Groban L.

Menopause. 2011 Jun;18(6):698-708. doi: 10.1097/gme.0b013e31820390a2.

4.

Ovariectomy is protective against renal injury in the high-salt-fed older mRen2. Lewis rat.

Yamaleyeva LM, Pendergrass KD, Pirro NT, Gallagher PE, Groban L, Chappell MC.

Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2064-71. Epub 2007 Jul 13.

5.

Aminoguanidine attenuates hypertension, whereas 7-nitroindazole exacerbates kidney damage in spontaneously hypertensive rats: the role of nitric oxide.

Huang CF, Hsu CN, Chien SJ, Lin YJ, Huang LT, Tain YL.

Eur J Pharmacol. 2013 Jan 15;699(1-3):233-40. doi: 10.1016/j.ejphar.2012.11.034. Epub 2012 Nov 28.

PMID:
23201071
6.

Influence of estrogen depletion and salt loading on renal angiotensinogen expression in the mRen(2).Lewis strain.

Cohen JA, Lindsey SH, Pirro NT, Brosnihan KB, Gallagher PE, Chappell MC.

Am J Physiol Renal Physiol. 2010 Jul;299(1):F35-42. doi: 10.1152/ajprenal.00138.2010. Epub 2010 May 12.

7.

Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals.

Carlström M, Brown RD, Edlund J, Sällström J, Larsson E, Teerlink T, Palm F, Wåhlin N, Persson AE.

Am J Physiol Renal Physiol. 2008 Feb;294(2):F362-70. Epub 2007 Nov 21. Erratum in: Am J Physiol Renal Physiol. 2008 Jul;295(1):F322.

8.

Isoform-specific regulation of nitric oxide synthase mRNA in the kidney by sodium and blood pressure.

Nadaud S, Mao C, Luvàra G, Michel JB, Soubrier F.

J Hypertens. 1998 Sep;16(9):1315-23.

PMID:
9746119
9.

Atorvastatin improves sodium handling and decreases blood pressure in salt-loaded rats with chronic renal insufficiency.

Juncos LI, Martín FL, Baigorria ST, Pasqualini ME, Fiore MC, Eynard AR, Juncos LA, García NH.

Nutrition. 2012 Sep;28(9):e23-8. doi: 10.1016/j.nut.2012.02.008. Epub 2012 Jun 12.

PMID:
22698702
10.

Lack of a role of neuronal nitric oxide synthase in the regulation of the renal function in rats fed a low-sodium diet.

Vanecková I, Kramer HJ, Malý J, Bäcker A, Bokemeyer D, Cervenka L.

Kidney Blood Press Res. 2002;25(4):224-31.

11.

Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats.

Aoki H, Nakata M, Dezaki K, Lu M, Gantulga D, Yamamoto K, Shimada K, Kario K, Yada T.

Endocr J. 2013;60(5):571-81. Epub 2013 Jan 16.

12.

Role of renal nerves in stimulation of renin, COX-2, and nNOS in rat renal cortex during salt deficiency.

Höcherl K, Kammerl M, Kees F, Krämer BK, Grobecker HF, Kurtz A.

Am J Physiol Renal Physiol. 2002 Mar;282(3):F478-84.

13.

Inhibition of prolyl hydroxylase domain-containing protein on hypertension/renal injury induced by high salt diet and nitric oxide withdrawal.

Dallatu MK, Choi M, Oyekan AO.

J Hypertens. 2013 Oct;31(10):2043-9. doi: 10.1097/HJH.0b013e32836356a0.

PMID:
23811999
14.

Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS.

Dautzenberg M, Keilhoff G, Just A.

J Physiol. 2011 Oct 1;589(Pt 19):4731-44. doi: 10.1113/jphysiol.2011.215897. Epub 2011 Aug 8.

15.

Neuronal nitric oxide synthase-deficient mice have impaired renin release but normal blood pressure.

Sällström J, Carlström M, Jensen BL, Skøtt O, Brown RD, Persson AE.

Am J Hypertens. 2008 Jan;21(1):111-6.

PMID:
18091753
16.

Carbonyl stress induces hypertension and cardio-renal vascular injury in Dahl salt-sensitive rats.

Chen X, Mori T, Guo Q, Hu C, Ohsaki Y, Yoneki Y, Zhu W, Jiang Y, Endo S, Nakayama K, Ogawa S, Nakayama M, Miyata T, Ito S.

Hypertens Res. 2013 Apr;36(4):361-7. doi: 10.1038/hr.2012.204. Epub 2013 Jan 31.

17.

Salt-sensitive splice variant of nNOS expressed in the macula densa cells.

Lu D, Fu Y, Lopez-Ruiz A, Zhang R, Juncos R, Liu H, Manning RD Jr, Juncos LA, Liu R.

Am J Physiol Renal Physiol. 2010 Jun;298(6):F1465-71. doi: 10.1152/ajprenal.00650.2009. Epub 2010 Mar 24.

18.

L-arginine or tempol supplementation improves renal and cardiovascular function in rats with reduced renal mass and chronic high salt intake.

Carlström M, Brown RD, Yang T, Hezel M, Larsson E, Scheffer PG, Teerlink T, Lundberg JO, Persson AE.

Acta Physiol (Oxf). 2013 Apr;207(4):732-41. doi: 10.1111/apha.12079. Epub 2013 Feb 25.

PMID:
23387940
19.

Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat.

Lindsey SH, Yamaleyeva LM, Brosnihan KB, Gallagher PE, Chappell MC.

Hypertension. 2011 Oct;58(4):665-71. doi: 10.1161/HYPERTENSIONAHA.111.175174. Epub 2011 Aug 15.

20.

Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide.

Xue B, Singh M, Guo F, Hay M, Johnson AK.

Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1638-46. doi: 10.1152/ajpheart.00502.2009. Epub 2009 Sep 4.

Supplemental Content

Support Center