Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Bone marrow osteoblast damage by chemotherapeutic agents.

Rellick SL, O'Leary H, Piktel D, Walton C, Fortney JE, Akers SM, Martin KH, Denvir J, Boskovic G, Primerano DA, Vos J, Bailey N, Gencheva M, Gibson LF.

PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758.

2.

Melphalan exposure induces an interleukin-6 deficit in bone marrow stromal cells and osteoblasts.

Rellick SL, Piktel D, Walton C, Hall B, Petros W, Fortney JE, Gencheva M, Denvir J, Hobbs G, Craig M, Gibson LF.

Cytokine. 2012 May;58(2):245-52. doi: 10.1016/j.cyto.2012.01.012.

3.

Bone marrow osteoblast vulnerability to chemotherapy.

Gencheva M, Hare I, Kurian S, Fortney J, Piktel D, Wysolmerski R, Gibson LF.

Eur J Haematol. 2013 Jun;90(6):469-78. doi: 10.1111/ejh.12109.

4.

Reduced bone marrow stem cell pool and progenitor mobilisation in multiple myeloma after melphalan treatment.

Knudsen LM, Rasmussen T, Jensen L, Johnsen HE.

Med Oncol. 1999 Dec;16(4):245-54.

PMID:
10618687
6.

Chemotherapy disrupts activity of translational regulatory proteins in bone marrow stromal cells.

Clutter SD, Fortney JE, Gibson LF.

Exp Hematol. 2006 Nov;34(11):1522-31.

PMID:
17046572
7.

Characterization and functional analysis of osteoblast-derived fibulins in the human hematopoietic stem cell niche.

Hergeth SP, Aicher WK, Essl M, Schreiber TD, Sasaki T, Klein G.

Exp Hematol. 2008 Aug;36(8):1022-34. doi: 10.1016/j.exphem.2008.03.013.

PMID:
18468769
8.

Human bone marrow mesenchymal stem cells expressing SDF-1 promote hematopoietic stem cell function of human mobilised peripheral blood CD34+ cells in vivo and in vitro.

Liang X, Su YP, Kong PY, Zeng DF, Chen XH, Peng XG, Zou ZM, Xu H.

Int J Radiat Biol. 2010 Mar;86(3):230-7. doi: 10.3109/09553000903422555.

PMID:
20201651
9.

SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors.

Khurana S, Melacarne A, Yadak R, Schouteden S, Notelaers T, Pistoni M, Maes C, Verfaillie CM.

Stem Cells. 2014 Nov;32(11):3012-22. doi: 10.1002/stem.1794.

10.

Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells.

Matsuoka Y, Nakatsuka R, Sumide K, Kawamura H, Takahashi M, Fujioka T, Uemura Y, Asano H, Sasaki Y, Inoue M, Ogawa H, Takahashi T, Hino M, Sonoda Y.

Stem Cells. 2015 May;33(5):1554-65. doi: 10.1002/stem.1941.

11.

Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells.

Hidalgo A, Sanz-Rodríguez F, Rodríguez-Fernández JL, Albella B, Blaya C, Wright N, Cabañas C, Prósper F, Gutierrez-Ramos JC, Teixidó J.

Exp Hematol. 2001 Mar;29(3):345-55.

PMID:
11274763
12.

Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

Kemp K, Morse R, Sanders K, Hows J, Donaldson C.

Ann Hematol. 2011 Jul;90(7):777-89. doi: 10.1007/s00277-010-1141-8.

PMID:
21234567
13.

Functional potentials of human hematopoietic progenitor cells are maintained by mesenchymal stromal cells and not impaired by plerixafor.

Ludwig A, Saffrich R, Eckstein V, Bruckner T, Wagner W, Ho AD, Wuchter P.

Cytotherapy. 2014 Jan;16(1):111-21. doi: 10.1016/j.jcyt.2013.07.007.

PMID:
24119647
14.

Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model.

de Barros AP, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, Meirelles MN, Borojevic R, Rossi MI.

PLoS One. 2010 Feb 8;5(2):e9093. doi: 10.1371/journal.pone.0009093.

15.

T-lymphoid differentiation potential measured in vitro is higher in CD34+CD38-/lo hematopoietic stem cells from umbilical cord blood than from bone marrow and is an intrinsic property of the cells.

De Smedt M, Leclercq G, Vandekerckhove B, Kerre T, Taghon T, Plum J.

Haematologica. 2011 May;96(5):646-54. doi: 10.3324/haematol.2010.036343.

16.

CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes.

Abe-Suzuki S, Kurata M, Abe S, Onishi I, Kirimura S, Nashimoto M, Murayama T, Hidaka M, Kitagawa M.

Lab Invest. 2014 Nov;94(11):1212-23. doi: 10.1038/labinvest.2014.110.

17.

Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration.

Yoon KA, Cho HS, Shin HI, Cho JY.

Stem Cells Dev. 2012 Dec 10;21(18):3391-402. doi: 10.1089/scd.2012.0128.

18.

Disruption of bis leads to the deterioration of the vascular niche for hematopoietic stem cells.

Kwon KR, Ahn JY, Kim MS, Jung JY, Lee JH, Oh IH.

Stem Cells. 2010 Feb;28(2):268-78. doi: 10.1002/stem.285.

19.

Targeting stem cell niche can protect hematopoietic stem cells from chemotherapy and G-CSF treatment.

Li S, Zou D, Li C, Meng H, Sui W, Feng S, Cheng T, Zhai Q, Qiu L.

Stem Cell Res Ther. 2015 Sep 15;6:175. doi: 10.1186/s13287-015-0164-4.

20.

Processing of CXCL12 by different osteoblast-secreted cathepsins.

Staudt ND, Maurer A, Spring B, Kalbacher H, Aicher WK, Klein G.

Stem Cells Dev. 2012 Jul 20;21(11):1924-35. doi: 10.1089/scd.2011.0307.

Items per page

Supplemental Content

Support Center